Design and Qualitative Analysis of Hetero Dielectric Tunnel Field Effect Transistor Device

Document Type : Original Article

Authors

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India

Abstract

A Hetero Dielectric Tunnel field effect transistor with the spacer on both sides of the gate is proposed in this paper. The performance and characteristics of Hetero Dielectric Tunnel field effect transistor using the ATLAS Technology Computer-Aided Design in 5nm regime were analyzed. The band-to-band tunneling leakage current will be reduced by introducing heterojunction and hetero dielectric spacer material in the proposed structure. In Hetero Dielectric Tunnel field effect transistor, double metal gate and high-k dielectric spacer improves high on the current and subthreshold swing. The high-k dielectric Hafnium oxide spacer is placed on both sides of the source and drains to import the tunneling mechanism. The proposed device in the 5nm node has improved DC characteristics such as a High ON-state current of 1.68 x 10-5 Amp & OFF-state Current reduced from 7. 83x 10-11 Amp to 5.13 x 10-12 Amp and ION / IOFF ratio has increased from 3.22 x 105 to 3.27 x 10  compared to conventional dual gate Tunnel field effect transistor. Therefore, this device is suitable for low power applications

Keywords

Main Subjects


  1. Cui, N., Liu, L., Xie, Q., Tan, Z., Liang, R., Wang, J. and Xu, J., "A two-dimensional analytical model for tunnel field effect transistor and its applications", Japanese Journal of Applied Physics, Vol. 52, No. 4R, (2013), 044303. doi: 10.7567/JJAP.52.044303.
  2. Bardon, M.G., Neves, H.P., Puers, R. and Van Hoof, C., "Pseudo-two-dimensional model for double-gate tunnel fets considering the junctions depletion regions", IEEE Transactions on Electron Devices, Vol. 57, No. 4, (2010), 827-834. doi: 10.1109/TED.2010.2040661.
  3. Gholizadeh, M. and Hosseini, S.E., "A 2-d analytical model for double-gate tunnel fets", IEEE Transactions on Electron Devices, Vol. 61, No. 5, (2014), 1494-1500. doi: 10.1109/TED.2014.2313037.
  4. Yadav, M., Bulusu, A. and Dasgupta, S., "Two dimensional analytical modeling for asymmetric 3t and 4t double gate tunnel fet in sub-threshold region: Potential and electric field", Microelectronics Journal, Vol. 44, No. 12, (2013), 1251-1259. doi: 10.1007/s12633-021-01509-2.
  5. Liao, X., Tsui, K., Liu, H., Chen, K. and Sin, J., "A step-gate-oxide soi mosfet for rf power amplifiers in short-and medium-range wireless applications", in 2003 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2003. Digest of Papers., IEEE., (2003), 33-36.
  6. Boucart, K. and Ionescu, A.M., "Double-gate tunnel fet with high-$\kappa $ gate dielectric", IEEE Transactions on Electron Devices, Vol. 54, No. 7, (2007), 1725-1733. doi: 10.1109/TED.2007.899389.
  7. Luong, G.V., Narimani, K., Tiedemann, A., Bernardy, P., Trellenkamp, S., Zhao, Q. and Mantl, S., "Complementary strained si gaa nanowire tfet inverter with suppressed ambipolarity", IEEE Electron Device Letters, Vol. 37, No. 8, (2016), 950-953. doi: 10.1109/LED.2016.2582041.
  8. Hu, V.P.-H., Chiu, P.-C. and Lu, Y.-C., "Impact of work function variation, line-edge roughness, and ferroelectric properties variation on negative capacitance fets", IEEE Journal of the Electron Devices Society, Vol. 7, (2019), 295-302. doi: 10.1109/JEDS.2019.2897286.
  9. Asthana, P.K., Ghosh, B., Goswami, Y. and Tripathi, B.M.M., "High-speed and low-power ultradeep-submicrometer iii-v heterojunctionless tunnel field-effect transistor", IEEE Transactions on Electron Devices, Vol. 61, No. 2, (2014), 479-486. doi: 10.1039/C4RA00538D.
  10. Balaji, B., Srinivasa Rao, K., Girija Sravani, K., Bindu Madhav, N., Chandrahas, K. and Jaswanth, B., "Improved drain current characteristics of HFO2/SiO2 dual material dual gate extension on drain side-tfet", Silicon, (2022), 1-6. doi: 10.1007/s12633-022-01955-6.
  11. Wadhwa, G. and Raj, B., "Design, simulation and performance analysis of jltfet biosensor for high sensitivity", IEEE Transactions on Nanotechnology, Vol. 18, (2019), 567-574. doi: 10.1109/TNANO.2019.2918192.
  12. Kumar, P.K., Balaji, B. and Rao, K.S., "Performance analysis of sub 10 nm regime source halo symmetric and asymmetric nanowire mosfet with underlap engineering", Silicon, Vol. 14, No. 16, (2022), 10423-10436. doi: 10.1007/s12633-022-01747-y.
  13. Balaji, B., Rao, K.S., Sravani, K.G. and Aditya, M., "Design, performance analysis of gaas/6h-sic/algan metal semiconductor fet in submicron technology", Silicon, (2022), 1-5. doi: doi: 10.1007/s12633-021-01545-y.
  14. Narang, R., Reddy, K.S., Saxena, M., Gupta, R. and Gupta, M., "A dielectric-modulated tunnel-fet-based biosensor for label-free detection: Analytical modeling study and sensitivity analysis", IEEE Transactions on Electron Devices, Vol. 59, No. 10, (2012), 2809-2817. doi: 10.1109/LED.2011.2174024.
  15. Kumar, N. and Raman, A., "Design and investigation of charge-plasma-based work function engineered dual-metal-heterogeneous gate si-si 0.55 ge 0.45 gaa-cylindrical nwtfet for ambipolar analysis", IEEE Transactions on Electron Devices, Vol. 66, No. 3, (2019), 1468-1474. doi: 10.1109/TED.2019.2893224.
  16. Morifuji, E., Yoshida, T., Kanda, M., Matsuda, S., Yamada, S. and Matsuoka, F., "Supply and threshold-voltage trends for scaled logic and sram mosfets", IEEE Transactions on Electron Devices, Vol. 53, No. 6, (2006), 1427-1432. doi: 10.1109/TED.2006.874752.
  17. Musalgaonkar, G., Sahay, S., Saxena, R.S. and Kumar, M.J., "Nanotube tunneling fet with a core source for ultrasteep subthreshold swing: A simulation study", IEEE Transactions on Electron Devices, Vol. 66, No. 10, (2019), 4425-4432. doi: 10.1109/TED.2019.2933756.
  18. Guin, S., Chattopadhyay, A., Karmakar, A. and Mallik, A., "Impact of a pocket doping on the device performance of a schottky tunneling field-effect transistor", IEEE Transactions on Electron Devices, Vol. 61, No. 7, (2014), 2515-2522. doi: 10.1109/TED.2014.2325068.
  19. Lee, J.W. and Choi, W.Y., "Design guidelines for gate-normal hetero-gate-dielectric (GHG) tunnel field-effect transistors (tfets)", IEEE Access, Vol. 8, (2020), 67617-67624. doi: 10.1109/ACCESS.2020.2985125.
  20. Naraiah, R., Balaji, B., Radhamma, E. and Udutha, R., "Delay approximation model for prime speed interconnects in current mode", IJITEE, ISSN, (2019), 2278-3075. doi: 10.35940/ijitee.I8019.078919.
  21. Singh, N., Buddharaju, K.D., Manhas, S.K., Agarwal, A., Rustagi, S.C., Lo, G., Balasubramanian, N. and Kwong, D.-L., "Si, sige nanowire devices by top–down technology and their applications", IEEE Transactions on Electron Devices, Vol. 55, No. 11, (2008), 3107-3118. doi: 10.1109/TED.2008.2005154.
  22. Han, K., Zhang, Y. and Deng, Z., "A simulation study of gate-all-around nanowire transistor with a core-substrate", IEEE Access, Vol. 8, (2020), 62181-62190. doi: 10.1109/ACCESS.2020.2983724.
  23. Zou, B., Sun, H., Guo, H., Dai, B. and Zhu, J., "Thermal characteristics of gan-on-diamond hemts: Impact of anisotropic and inhomogeneous thermal conductivity of polycrystalline diamond", Diamond and Related Materials, Vol. 95, (2019), 28-35. doi: 10.1088/1361-6641/ac1c4f.
  24. Dipalo, M., Gao, Z., Scharpf, J., Pietzka, C., Alomari, M., Medjdoub, F., Carlin, J.-F., Grandjean, N., Delage, S. and Kohn, E., "Combining diamond electrodes with gan heterostructures for harsh environment isfets", Diamond and Related Materials, Vol. 18, No. 5-8, (2009), 884-889. doi: 10.1016/j.diamond.2009.01.011.
  25. Sachid, A.B., Manoj, C., Sharma, D.K. and Rao, V.R., "Gate fringe-induced barrier lowering in underlap finfet structures and its optimization", IEEE Electron Device Letters, Vol. 29, No. 1, (2007), 128-130. doi: 10.1109/LED.2007.911974.
  26. Sahay, S. and Kumar, M.J., "A novel gate-stack-engineered nanowire fet for scaling to the sub-10-nm regime", IEEE Transactions on Electron Devices, Vol. 63, No. 12, (2016), 5055-5059. doi: 10.1109/TED.2016.2617383.
  27. Sachid, A.B., Chen, M.-C. and Hu, C., "Finfet with high-$\kappa $ spacers for improved drive current", IEEE Electron Device Letters, Vol. 37, No. 7, (2016), 835-838. doi: 10.1109/LED.2016.2572664.
  28. Francis, D., Faili, F., Babić, D., Ejeckam, F., Nurmikko, A. and Maris, H., "Formation and characterization of 4-inch gan-on-diamond substrates", Diamond and Related Materials, Vol. 19, No. 2-3, (2010), 229-233. doi: 10.1016/j.diamond.2009.08.017.
  29. Pal, P.K., Kaushik, B.K. and Dasgupta, S., "Investigation of symmetric dual-k spacer trigate finfets from delay perspective", IEEE Transactions on Electron Devices, Vol. 61, No. 11, (2014), 3579-3585. doi: 10.1109/TED.2014.2351616.
  30. Sachid, A.B., Lin, H.-Y. and Hu, C., "Nanowire fet with corner spacer for high-performance, energy-efficient applications", IEEE Transactions on Electron Devices, Vol. 64, No. 12, (2017), 5181-5187. doi: 10.1109/TED.2017.2764511.