A New Recurrent Radial Basis Function Network-based Model Predictive Control for a Power Plant Boiler Temperature Control

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Ilam University, Ilam, Iran

2 Department of Electrical Engineering, University of Bonab, Bonab, Iran.

Abstract

In this paper, a new radial basis function network-based model predictive control (RBFN-MPC) is presented to control the steam temperature of a power plant boiler. For the first time in this paper the Laguerre polynomials are used to obtain local boiler models based on different load modes. Recursive least square (RLS) method is used as observer of the Laguerre polynomials coefficient. Then a new locally recurrent radial basis function neural network with self-organizing mechanism is used to model these local transfer function and it used to estimate the boiler future behavior. The recurrent RBFN tracks system is dynamic online and updates the model. In this recurrent RBFN, the output of hidden layer nodes at the past moment is used in modelling, So the boiler model behaves exactly like a real boiler. Various uncertainties have been added to the boiler and these uncertainties are immediately recognized by the recurrent RBFN. In the simulation, the proposed method has been compared with traditional MPC (based on boiler mathematical model). Simulation results showed that the recurrent RBFN-based MPC perform better than mathematical model-based MPC. This is due to the neural network's online tracking of boiler dynamics, while in the traditional way the model is always constant. As the amount of uncertainty increases, the difference between our proposed method and existing methods can clearly be observed.

Keywords


  1. Gao J.L., “Research on Boiler Water Supply Control System Based on AT89C55 and Fractional order PID Algorithm”, Procedia Computer Science, Vol. 154, (2019) 173-180. DOI: 10.1016/j.procs.2019.06.026
  2. Tavoosi, J., “Sliding mode control of a class of nonlinear systems based on recurrent type-2 fuzzy RBFN”, International Journal of Mechatronics and Automation, Vol. 7, No. 2, (2020), 72-80. DOI: 10.1504/IJMA.2020.108797
  3. Gao, Y., Zeng, D., Ping, B., Zhang, L., Liu, J., “Research on coordinated control system of drum boiler units considering energy demand decoupling”, Control Engineering Practice, Vol. 102, (2020).  DOI: 10.1016/j.conengprac.2020.104562
  4. Siddiqui, I., Ingole, D., Sonawane, D., Agashe, S., “Offset-free Nonlinear Model Predictive Control of A Drum-boiler Pilot Plant”, IFAC-PapersOnLine, Vol. 53, No. 1, (2020), 506-511,  DOI: 10.1016/j.ifacol.2020.06.085
  5. Tavoosi, J., Azami, R., “A New Method for Controlling the Speed of a Surface Permanent Magnet Synchronous Motor using Fuzzy Comparative Controller with Hybrid Learning”, Journal of Computational Intelligence in Electrical Engineering, Vol. 10, (2019), 57-68. DOI: 10.22108/isee.2019.112834.1148
  6. Mohammadzadeh, A., Kayacan, E., “A novel fractional-order type-2 fuzzy control method for online frequency regulation in ac microgrid”, Engineering Applications of Artificial Intelligence, Vol. 90, (2020), DOI: 10.1016/j.engappai.2020.103483
  7. Hesarian, M.S., Tavoosi, J., “Green Technology used in Finishing Process Study of the Wrinkled Cotton Fabric by Radial Basis Function neurons. (Experimental and Modeling analysis)”, Advances in Environmental Technology, Vol. 5, No. 1, (2019), 35-45. DOI: 10.22104/aet.2019.3730.1183
  8. Hesarian, M.S., Tavoosi, J., Hosseini, S.H., “Neuro-fuzzy Modelling and Experimental Study of the Physiological Comfort of Green Cotton Fabric Based on Yarn Properties”, International Journal of Engineering, Transactions C: Aspects, Vol. 33, No. 12, (2020), 2443-2449. DOI:10.5829/ije.2020.33.12c.02
  9. Tavoosi, J., “A New Type-2 Fuzzy Sliding Mode Control for Longitudinal Aerodynamic Parameters of a Commercial Aircraft, Journal Européen des Systèmes Automatisés, Vol. 53, No. 4, (2020) , 479-485.  DOI:10.18280/jesa.530405
  10. Mohammadzadeh, A., Rathinasamy, A., “Energy management in photovoltaic battery hybrid systems: A novel type-2 fuzzy control”, International Journal of Hydrogen Energy, Vol. 45, No. 41, (2020), 20970-20982. DOI:10.1016/j.ijhydene.2020.05.187
  11. Tavoosi, J., Suratgar, A.A., and Menhaj, M.B., “Nonlinear System Identification Based on a Self-Organizing Type-2 Fuzzy RBFN,” Engineering Applications of Artificial Intelligence, Vol. 54, (2016), 26-38. DOI: 10.1016/j.engappai.2016.04.006
  12. Tavoosi, J., Suratgar, A.A., and Menhaj, M.B., “Stable ANFIS2 for Nonlinear System Identification,” Neurocomputing, Vol. 182, (2016), 235-246. DOI: 10.1016/j.neucom.2015.12.030
  13. Tavoosi, J., Suratgar, A.A., and Menhaj, M.B., “Stability Analysis of Recurrent Type-2 TSK Fuzzy Systems with Nonlinear Consequent Part” Neural Computing and Applications, Vol. 28, No.1, (2017), 47-56. DOI: 10.1007/s00521-015-2036-3
  14. Tavoosi, J., Suratgar, A.A., and Menhaj, M.B., “Stability Analysis of a Class of MIMO Recurrent Type-2 Fuzzy Systems”, International Journal of Fuzzy Systems, Vol. 19, No. 3, (2017), 895-908. DOI: 10.1007/s40815-016-0188-7
  15. Tavoosi, J., A. Shamsi Jokandan, and M. A. Daneshwar, “A New Method for Position Control of a 2-DOF Robot Arm Using Neuro-Fuzzy Controller,” Indian Journal of Science and Technology, Vol. 5, No. 3, (2012), 1-5. DOI: 10.17485/ijst/2012/v5i3.10
  16. Tavoosi, J., “PMSM speed control based on intelligent sliding mode technique”, In COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 39 No. 6, (2020), 1315-1328. DOI:10.1108/COMPEL-04-2020-0137
  17. Tavoosi, J., and F. Mohammadi, “Design a New Intelligent Control for a Class of Nonlinear Systems”, In 6th International Conference on Control, Instrumentation and Automation (ICCIA), Sanandaj, Iran, (2019), 1-5, DOI: 10.1109/ICCIA49288.2019.9030868
  18. Tavoosi, J., and F. Mohammadi, “A 3-PRS Parallel Robot Control Based on Fuzzy-PID Controller”, In 6th International Conference on Control, Instrumentation and Automation (ICCIA), Sanandaj, Iran, (2019), 1-4, DOI: 10.1109/ICCIA49288.2019.9030860
  19. Asad, Y.P., Shamsi, A., Tavoosi, J., “Backstepping-Based Recurrent Type-2 Fuzzy Sliding Mode Control for MIMO Systems (MEMS Triaxial Gyroscope Case Study)”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 25, No. 2, (2017), 213-233. DOI: 10.1142/S0218488517500088
  20. Tavoosi, J., Badamchizadeh, M.A., “A class of type-2 fuzzy neural networks for nonlinear dynamical system identification”, Neural Computing & Applications, Vol. 23, (2013) 707-717. DOI: 10.1007/s00521-012-0981-7
  21. Tavoosi, J., “A New Type-2 Fuzzy Systems for Flexible-Joint Robot Arm Control”, AUT Journal of Modeling and Simulation, Vol. 51, No. 2, (2019). DOI: 10.22060/miscj.2019.14478.5108
  22. Nasiri Soloklo, H., Bigdeli, N., “A PFC-based Hybrid Approach for Control of Industrial Heating Furnace”, Journal of Electrical and Computer Engineering Innovations, Vol. 7, No. 1, (2019), 81-92. DOI: 10.22061/jecei.2020.5744.253
  23. Sunil, P.U., Desai, K., Barve, J., Nataraj, P.S.V., “An experimental case study of robust cascade two-element control of boiler drum level”, ISA Transactions, Vol. 96, (2020), 337-351. DOI: 10.1016/j.isatra.2019.06.016
  24. Wang, C., Qiao, Y., Liu, M., Zhao, Y., Yan, J., “Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler”, Applied Energy, Vol. 260, (2020). DOI: 10.1016/j.apenergy.2019.114341
  25. Mello, F.M., Cruz, A.G.B., Sousa, R., “Fuzzy Control Applied to Combustion in Sugarcane Bagasse Boilers”, Editor(s): Anton A. Kiss, Edwin Zondervan, Richard Lakerveld, Leyla Özkan, Computer Aided Chemical Engineering, Vol. 46, (2019), 1135-1140. DOI: 10.1016/B978-0-12-818634-3.50190-9
  26. Kong, L., Yuan, J., “Generalized Discrete-time nonlinear disturbance observer based fuzzy model predictive control for boiler–turbine systems”, ISA Transactions, Vol. 90, (2019), 89-106. DOI: 10.1016/j.isatra.2019.01.003
  27. Annadurai, S., Arock, M., “Fuel Classification based on Flame Characteristics using a Time Series Analysis with Fuzzy Support Vector Machine Algorithm”, Asia-Pacific Journal of Chemical Engineering, Vol. 15, No. 5, (2020). DOI: 10.1002/apj.2395
  28. Shi, J., “Identification of Circulating Fluidized Bed Boiler Bed Temperature Based on Hyper-Plane-Shaped Fuzzy C-Regression Model”, International Journal of Computational Intelligence and Applications, Vol. 19, No. 4, (2020). DOI: 10.1142/S1469026820500297
  29. Guo, C., Xie, X.J., “Output feedback control of feedforward nonlinear systems with unknown output function and input matching uncertainty”, International Journal of Systems Science, Vol. 51, No. 6, (2020), 971-986. DOI: 10.1080/00207721.2020.1746438
  30. Hu, M., Wang, F., “Maximum Principle for Stochastic Recursive Optimal Control Problem under Model Uncertainty”, SIAM Journal on Control and Optimization, Vol. 58, No. 3, (2020), 1341-1370. DOI: 10.1137/19M128795X
  31. Chaoui, H., Yadav, S. “Adaptive Control of a 3-DOF Helicopter Under Structured and Unstructured Uncertainties”, Journal of Control, Automation and Electrical Systems, Vol. 31, (2020), 94–107. DOI: 10.1007/s40313-019-00544-0
  32. Zhang, S., Hui, Y., Chi, R., Li, J., “Nonholonomic dynamic linearisation based adaptive PID-type ILC for nonlinear systems with iteration-varying uncertainties”, International Journal of Systems Science, Vol. 51, No. 5, (2020), 903-921. DOI: 10.1080/00207721.2020.1746434
  33. Sajedi, S., Sarfaraz, A., Bamdad, S., Khalili-Damghani, K. Designing a Sustainable Reverse Logistics Network Considering the Conditional Value at Risk and Uncertainty of Demand under Different Quality and Market Scenarios, International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 11, (2020), 2252-2271. DOI: 10.5829/ije.2020.33.11b.17
  34. Tavoosi, J., “A Novel Recurrent Type-2 Fuzzy Neural Network Stepper Motor Control”, Mechatronic Systems and Control, Vol 49, No. 1, (2021), DOI: 10.2316/J.2021.201-0097
  35. Choug, N., Benaggoune, S., Belkacem, S., “Hybrid Fuzzy Reference Signal Tracking Control of a Doubly Fed Induction Generator”, International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 4, (2020), 567-574. DOI: 10.5829/ije.2020.33.04a.08
  36. Kumari, A., Das, S.K. and Srivastava, P.K., Data-driven modeling of corrosion and scale deposition rate in economizer, Anti-Corrosion Methods and Materials, Vol. 64 No. 2, (2017), 178-187. DOI: 10.1108/ACMM-11-2015-1595
  37. Yu, W., Zhao, F., Xu, H., Xu, M., Yang, W., Siah, K.B., Prabakaran, S., “Predictive control of CO2 emissions from a grate boiler based on fuel nature structures using intelligent neural network and Box-Behnken design”, Energy Procedia, Vol. 158, (2019), 364-369. DOI: 10.1016/j.egypro.2019.01.116
  38. Sharipov, M., “Steam Boiler Control Using Neural Networks”, In

International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, (2019), 1-7. DOI: 10.1109/FarEastCon.2019.8934742

  1. Savargave, S.B. and Lengare, M.J., Modeling and Optimizing Boiler Design using Neural Network and Firefly Algorithm, Journal of Intelligent Systems, Vol.  27, No. 3, (2018), 393–412. DOI: 10.1515/jisys-2016-0113
  2. Muravyova, E.A., Uspenskaya, N.N. Development of a Neural Network for a Boiler Unit Generating Water Vapour Control. Opt. Mem. Neural Networks, Vol. 27, (2018), 297–307. DOI: 10.3103/S1060992X18040070
  3. Kouadri, A., Namoun, A. and Zelmat, M. , “Modelling the nonlinear dynamic behaviour of a boiler-turbine system using a radial basis function neural network”, International Journal of robust and nonlinear Control, Vol. 24, (2014), 1873-1886. DOI:10.1002/rnc.2969
  4. Tavoosi, J., “An experimental study on inverse adaptive neural fuzzy control for nonlinear systems”, International Journal of Knowledge-based and Intelligent Engineering Systems, Vol. 24, No. 2, (2020). DOI: 10.3233/KES-200036
  5. Liao, B., Peng, K., Song, S., Lin, X. Optimal Control for Boiler Combustion System Based on Iterative Heuristic Dynamic Programming. In: Advances in Neural Networks. Lecture Notes in Computer Science, Vol. 6675. Springer, Berlin, Heidelberg, (2011). DOI: 10.1007/978-3-642-21105-8_49
  6. Wang, L., “Model Predictive Control System Design and Implementation Using MATLAB”, 1st edition, Springer Publishing Company, Incorporated, (2009). DOI: 10.1007/978-1-84882-331-0