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A B S T R A C T  

 

In this paper, a new radial basis function network-based model predictive control (RBFN-MPC) is 

presented to control the steam temperature of a power plant boiler. For the first time in this paper the 

Laguerre polynomials are used to obtain local boiler models based on different load modes. Recursive 
least square (RLS) method is used as observer of the Laguerre polynomials coefficient. Then a new 

locally recurrent radial basis function neural network with self-organizing mechanism is used to model 

these local transfer function and it used to estimate the boiler future behavior. The recurrent RBFN tracks 
system is dynamic online and updates the model. In this recurrent RBFN, the output of hidden layer 

nodes at the past moment is used in modelling, So the boiler model behaves exactly like a real boiler. 

Various uncertainties have been added to the boiler and these uncertainties are immediately recognized 
by the recurrent RBFN. In the simulation, the proposed method has been compared with traditional MPC 

(based on boiler mathematical model). Simulation results showed that the recurrent RBFN-based MPC 

perform better than mathematical model-based MPC. This is due to the neural network's online tracking 
of boiler dynamics, while in the traditional way the model is always constant. As the amount of 

uncertainty increases, the difference between our proposed method and existing methods can clearly be 

observed. 

doi: 10.5829/ije.2021.34.03c.11
 

NOMENCLATURE   

𝑝  Time scale factor 𝑀(𝑘)  Gain matrix in RLS 

𝛷𝑖  Laguerre functions 𝜇𝑖(𝑘)  the coefficients of the functions in MPC 

𝑌𝑚(𝑠)  Laplase transform of system’s output 𝐻𝑖  The horizon sample 

𝐶𝑖  Output matrices u(k) Control input 

𝑈(𝑠)  Laplase transform of system’s input ∅𝑖(𝑢)  Output of RBF neurons 

𝑙𝑖(𝑠)  Terms of Laguerre Ladder network 𝑤𝑖  Waights in RBFN 

𝜏𝑖  Time constant of the system 𝑦𝑚(𝑘)  Output of the model 

 
1. INTRODUCTION1 
 
Boilers are used in many industries such as power plants. 

Power plants use boilers to generate steam for electrical 

power in steam turbines. The more precise control of the 

boiler outlet temperature is crucial. If the outlet steam 

temperature is not properly controlled, the pressure 

needed to rotate the turbines may not be reached or the 
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efficiency of the boiler and turbine may be reduced. Due 

to the long history of using boilers in various industries, 

which reaches more than 150 years, naturally, various 

methods have been proposed to control outlet 

temperature. From simple methods such as PID [1] to 

model free methods such as variable structures adaptive 

control [2], are each proposed to control the boiler 

system. The above methods do not require an accurate 
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mathematical model of the boiler, but do not perform 

well in the face of instantaneous changes in the boiler 

parameters (or uncertainty) as well as different boiler 

operating conditions. In contrast, various model-based 

methods for boiler control have been proposed, from 

coordinated control system [3] to nonlinear model 

predictive control [4]. Model-based methods can 

accurately control the boiler; but, if for any reason the 

boiler dynamics changed or the boiler parameters 

changed, these methods are not accurate. To solve the 

above problems, one solution can be the use of 

computational intelligence. Computational intelligence 

seems to be a useful tool for precise control of a system 

[5-7]. Fuzzy logic [8-10] and neural network [11-12] or 

a combination of the two [13-15] have been used in 

various papers to identify systems dynamics and control 

[16-19]. Today, due to the complexity of systems, 

mathematical model-based approaches alone do not 

work. Thus, by combining traditional control methods 

with computational intelligence-based tools, more 

precise control methods can be proposed [20-21]. 

Various works have been discussed in the field of boiler 

and heating system control [22]. In the following we will 

discuss some of the latest results. Sunil et al. [23] focused 

on improving the performance of boiler-drum level 

control over a wide range of operation using the 

quantitative feedback theory (QFT) approach. A dynamic 

boiler model has established and validated with values 

measured from a real power plant [24]. In the mentioned 

paper, a reheating steam control method is proposed that 

takes into account changes in heat storage in boiler metals 

and steam temperature deviations. A fuzzy control has 

been implemented in the combustion air flowrate of a 

large boiler in the Tereos group, to maintain the oxygen 

content in the combustion products within the optimum 

range [25]. The boiler turbine system is usually subject to 

the tight input constraint, the strong nonlinearity and the 

complex disturbance, which makes the control a 

challenging task. To this end, a disturbance observer 

based fuzzy model predictive control scheme is proposed 

for the boiler system in literature [26]. Support vector 

machin based control by combination the ability of fuzzy 

logic and learning ability of neural network have been 

used for boiler control in [27]. Shi [28] has applied a new 

fuzzy clustering method to boiler temperature control. 

They used type-2 fuzzy because this tool has high 

capacity on handling with uncertainty. Uncertainty in the 

parameter or structure of a system is one of the most 

challenging issues in control engineering [29]. In the 

past, the uncertainty of a system was not considered. The 

reason for this was either insufficient knowledge or 

negligence. That is why in the past, control systems did 

not provide the desired and suitable answer. It is clear that 

most systems that need to be controlled are dynamic and 

have multiple parameters. Some of these parameters 

change over time or may change for a moment and then 

return to the previous state [30]. If the values of the 

parameters are considered constant in the designed 

control system, the desired answer will not be obtained in 

a practical system. Therefore, a control system is 

successful when it considers as many parametric and 

systematic changes as possible and has a plan for these 

changes [31]. Adaptive control systems and robust 

control systems work well with parametric and structural 

changes. But these methods require a mathematical and 

relatively accurate model of the system [32]. In contrast, 

methods based on computational intelligence (fuzzy 

logic, neural nets, etc.) have the ability to update 

themselves and can provide good performance in the face 

of uncertainties [33-35]. In the following, we will analyze 

the articles related to applications of neural network in 

boiler control. A multilayer perceptron neural network 

model has been developed to envisage the corrosion rate 

and oxide scale deposition rate in economizer tubes of a 

coal-fired boiler [36]. The mentioned paper does not talk 

about temperature control, but parametric sensitivity is 

well modeled by the neural network. A two layer 

perceptron neural network has been used to control of a 

boiler in literature [37]. In the mentioned paper, the 

inputs of neural network are temperature, pressure and 

carbon monoxide of the boiler and the outputs are 

percentage of valve opening for fuel gas supply to the 

boiler and percentage of valve opening for air supply to 

the boiler. Unfortunately, load uncertainty are not 

considered in this article.  In literature [38] the perceptron 

neural network is used to control of a boiler as a two 

inputs - three outputs system. Inputs are: temperature, 

pressure and carbon dioxide and outputs are: percentage  

of  valve  opening  for  fuel  gas  supply and percentage  

of  valve  opening  to  supply  air. In the mentioned article, 

no uncertainty has been applied neither in the parameters 

nor in the load, also the training and testing error of the 

neural network is relatively high. A neural network-based 

controller has been designed for a power boiler to save 

fuel consumption [39]. In the mentioned article, a proper 

training and test error has been obtained but any uncertain 

load has not been applied. A multilayer feed-forward 

neural network is trained to identify the inverse dynamic 

model of a boiler system [40]. In the mentioned paper, a 

perceptron-type three-input-three-output neural network 

has been used for this purpose, and a completely practical 

and laboratory work has been done, but unfortunately no 

uncertainty has been considered for the model. 

There is no article that has used the recurrent radial 

basis neural network to be used in model predictiove 

control of boiler system, and therefore our proposed 

method is quite original, but very few articles have used 

the conventional radial basis neural network to model or 

control the boiler, some of which are discussed in 

continue. Kouadri et al. [41] have been able to use the 

high capability of the radial basis function neural network 

to model and system identification of the boiler system. 
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In the mentioned paper, an ordinary (not recurrent) radial 

base function neural network with training based on 

genetic algorithm has been used. In literature [42], the 

ordinary radial base function neural network has been 

used to inverse control of a boiler system. In the 

mentioned paper the load uncertainty is not considered 

and the boiler equations are not clear. An ordinary radial 

basis function neural network has been  performed to 

identify the boiler system and then use it in the optimal 

control of the boiler, but not any type of uncertainty (load 

or parameters) is considered [43]. We have justified by 

reviewing the above articles that there are shortcomings 

in this regard. Therefore, in this paper, we proposed a 

new method to eliminate them. The innovations of our 

proposed method are as follows: 

- In most of the articles, general feedback was used 

in recurrent RBFNs, while in our proposed 

method, local feedback was used. In general 

feedback, the information from the past moment of 

the last layer is applied as input to the first layer, 

but in local feedback, the information from the past 

moment of the output of the neuron itself is used as 

the input of the same neuron. It should be noted 

that neural network training with local feedback is 

far more complex than training with general 

feedback. 

- The second innovation of our method is the use of 

structural training (Self-Organizing) in regulating 

the number of neurons in the middle layer of the 

neural network. In this way, starting from one 

neuron and due to the complexity of the data, the 

number of neurons increases, until we achieve the 

desired minimum error. 

- The third innovation is using the Laguerre 

polynomials to obtain the local boiler models for 

different boiler load modes. 

- The forth innovation is proposed a new structure 

for MPC based on RBFN. The innovation of this 

section is using difference formulation for MPC. 

- Considering the parameters of a real boiler with 

real uncertainty is fifth innovation. All numerical 

and parametric values were measured from a 

laboratory and practical boiler. 

In this paper, the main focus is on the load uncertainty 

problem. First, the dynamic equations of the boiler 

system are expressed. Then, the radial basis function 

neural network prediction model control system is 

presented. Finally, simulations and conclusions are 

presented. 

 

 

2. MATHEMATICAL MODELING OF SUPER HEATED 
STEAM OF POWER PLANT 
 
In this section, first the Laguerre functions are 

introduced; then, the boiler modeling method is 

expressed using these functions. Laguerre functions are a 

complete set of orthogonal functions in Judicial 𝐿2(0,∞) 

which are widely used because of the simple and easy 

expression of its network. These functions come in a 

series of functions [44]: 

𝛷𝑖(𝑡)=√2𝑝 
𝑒𝑝𝑡         𝑑𝑖−1

(i − 1)!𝑑𝑡𝑖−1 
[𝑡𝑖−1. 𝑒2𝑝𝑡],       𝑖 = 1,2,...,∞ (1) 

are defined where 𝑝 is a constant called the time scale 

factor. The laplace transform of Equation (1) is: 

𝛷𝑖(𝑡)=𝑙{𝛷𝑖(𝑡)}= √2𝑝 
(𝑠−𝑝)𝑖−1

(s+p)𝑖) 
.    𝑖= 1,2,...,∞ (2) 

Every open loop system can be approximated by 

Laguerre functions as Equation (3): 

𝑌𝑚(𝑠) = ∑ 𝐶𝑖𝛷𝑖(𝑠)𝑈(𝑠)𝑛
𝑖=1 = ∑ 𝐶𝑖𝑙𝑖(𝑠)

𝑛
𝑖=1   (3) 

There are several ways to express the Laguerre Ladder 

network. However, it is desirable for us to express the 

Laguerre ladder network in the state space so that it can 

directly predict the outputs of the system. The system 

state space expression using the Laguerreithmic 

functions after discretization is as follows [44] : 

L(k + 1) = AL(k) + Bu(k)  

y(k) = CL(k) 
(4) 

In Equation (4), the system state vector is L(k) of the 

order n and u (k) is the input of the system. The matrix A 

is the lower triangular matrix of NxN. Also B is the 

matrix of input coefficients of the system (Nx1) whose 

elements are determined by line-off. This way the 

amount of computation is greatly reduced. If 𝑇 is the 

system sampling period, therefore [44]: 

𝜏1 = 𝑒−𝑝𝑇                     

𝜏2 = 𝑇 + 
2

𝑃
 (𝑒−𝑝𝑇-1) 

𝜏3 =- 𝑇𝑒−𝑝𝑇 − 
2

𝑃
 (𝑒−𝑝𝑇-1)  

𝜏4 =√2𝑝 
 (1−𝜏1)

𝑝
          

𝑎 =  𝜏1𝜏2 + 𝜏3          

(5) 

Then the system description matrices for Equation (4) are 

expressed as follows: 

𝐴 =

[
 
 
 
 

𝜏1 0

−
𝑎

𝑇
𝜏1

… 0
… 0

⋮ ⋮
(−1)𝑁−1𝜏2

𝑛−2𝑎

𝑇𝑁−1 …

⋱ ⋮

−
𝑎

𝑇
𝜏1]

 
 
 
 

  

𝐵 = [𝜏1    (
−𝜏2

𝑇
) 𝜏4  … (

−𝜏2

𝑇
)
𝑁−1

𝜏4]
𝑇

  

L(k)=[𝑙1(𝑘)  𝑙2(𝑘)… 𝑙𝑁(𝑘)]𝑇  

C= [𝑐1 𝑐2…𝑐𝑁] 

(6) 

The vector C, which is the system observer coefficients 

vector with N + 1 dimensional, is determined by using 
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the recursive least squares (RLS) to express the 

relationship between the Laguerre model and the desired 

system. 

𝐶(𝑘) = 𝐶(𝑘 − 1) + {𝑀(𝑘)[𝑦(𝑘) − 𝐶(𝑘 − 1)𝐿(𝑘)]}𝑇   

𝑀(𝑘) =
𝑃(𝐾−1)𝐿(𝐾)

𝜆+𝐿𝑇(𝐾)𝑃(𝐾−1)𝐿(𝐾)
  

P(k) =
1

λ
[𝑃(𝑘 − 1) − 𝑀(𝑘)𝐿𝑇(𝑘)𝑃(𝑘 − 1)]   

(7) 

where λ is forgetting factor. From Equations (1) to (7), a 

model of a boiler system can be obtained. As it is clear 

from the above equations, the obtained model is dynamic 

and with exponential coefficients and can be a relatively 

accurate mathematical model of a practical boiler. 

 

 
3. MODEL PREDICTIVE CONTROL 
 

Model predictive control has rules similar to classical 

prediction control, as both methods use a model to predict 

the future output of the system. Model predictive control 

considers the structure of control law as a linear 

combination of a set of basic functions. Then the weight 

of the coefficients of the basic functions in the linear 

combination has to be calculated. The selection of basic 

functions is also based on the process properties and the 

desired reference inputs. The structure of the control law 

can be considered as follows.: 

𝑢(𝑘 + 𝑖) = ∑ 𝜇𝑛𝑢𝑏𝑛(𝑖)  𝑁
𝑛=1   (8) 

where the 𝜇𝑛 is the coefficients of the functions with is 

linear in sequence and specifies the number of base types 

(𝑢𝑏𝑛(𝑖)). The values of the basic functions are 

instantaneous k+i (𝑢(𝑘 + 𝑖)). The choice of these basic 

functions depends on the nature of the process and the 

reference input and generally uses step-slope and 

parabolic functions. In most cases, however, using two 

steps to the step and the ramp is sufficient: 

𝑢(𝑘 + 𝑖) =  𝜇1(𝑘) + 𝜇2(𝑘) ∗ 𝑖      (9) 

The model predictive control algorithm finds the sum of 

future control variables in such a way that the output of 

the process is as close to the reference sequence as 

possible. The feedback correction sequence is computed 

by an exponential relation:   

𝑦𝑝(𝑘 + 𝑖) = 𝑦𝑚(𝑘 + 𝑖) − λ𝑖[𝑦𝑚(𝑘) − 𝑦(𝑘)]  (10) 

where 𝑖 = 1,2, … , 𝐻𝑖 are the total number of matching 

points. 𝑦𝑝(𝑘 + 𝑖) are the values of the feedback 

correction sequence at time 𝑘 + 𝑖, 𝑦𝑚(𝑘) is also the 

model outputs (RBFN output) and y(k) are process 

outputs. λ𝒊 = 𝒆
−

𝑻𝒔
𝑻𝒓  which is 𝑇𝑠 the sampling time and 𝑇𝑟 

the expected response time to the reference sequence  . 

By combination of Equations (4) and (9), the future 

output can be obtained. 

𝑦𝑚(𝑘 + 𝑖) = 𝐶𝐴𝑖𝐿(𝑘) + 𝐶[𝐴𝑖−1 + 𝐴𝑖−2 + ⋯+

𝐼]𝐵𝜇1(𝑘) + 𝐶[𝐴𝑖−2 + 2𝐴𝑖−3 + ⋯+ (𝑖 −

1)𝐼]𝐵𝜇2(𝑘)   

(11) 

where 𝑦𝑚(𝑘 + 𝑖) is output of the model at 𝑘 + 𝑖.  
MPC is a control strategy that explicitly uses the 

process model to predict the future behavior of the 

process output in a finite horizon, and the control effort 

is achieved by minimizing the interaction between the 

predicted output of the model and the reference sequence 

at a given time horizon. The predictive control law is 

generally computed by minimizing the axial scaling: 

J=∑ [𝑦𝑝(𝑘 + 𝑖) + 𝑒(𝑘 + 𝑖) − 𝑦𝑟(𝑘 + 𝑖)]2
𝐻2 
𝑖=𝐻1 

 (12) 

In relation to the control effort, only two coefficients of 

the basic functions, 𝜇1(𝑘) and 𝜇2(𝑘), are uncertain. In 

order to determine these unknown parameters, we rewrite 

the above relations [44]: 

J= [𝑦𝑝(𝑘 + 𝐻1) + 𝑒(𝑘 + 𝐻1) − 𝑦𝑟(𝑘 + 𝐻1)]
2 +

[𝑦𝑝(𝑘 + 𝐻2) + 𝑒(𝑘 + 𝐻2) − 𝑦𝑟(𝑘 + 𝐻2)]
2 

(13) 

We will have the following relationship by replacing the 

reference sequence and predicting the process output . 

[𝑋1(k) + 𝑀11μ1(𝑘) + 𝑀12μ2(𝑘)]2 + [𝑋2(𝑘) +
𝑀12μ1(𝑘) + 𝑀22μ2(𝑘)]2    

(14) 

In this regard : 

𝑋1(𝑘) = 𝐶𝐴𝐻1𝐿(𝑘) + 𝑒(𝑘 + 𝐻1) − 𝑦𝑟(𝑘 + 𝐻1) 

𝑋2(𝑘) = 𝐶𝐴𝐻2𝐿(𝑘) + 𝑒(𝑘 + 𝐻2) − 𝑦𝑟(𝑘 + 𝐻2) 

𝑀11 = 𝐶(𝐴𝐻1−1 + 𝐴𝐻1−2 + ⋯+ 𝐼)𝐵 

𝑀12 = 𝐶(𝐴𝐻1−2 + 2𝐴𝐻1−3 + ⋯+ (𝐻1 − 1)𝐼)𝐵 

𝑀21 = 𝐶(𝐴𝐻2−1 + 𝐴𝐻2−2 + ⋯+ 𝐼)𝐵                

𝑀22 = 𝐶(𝐴𝐻2−2 + 2𝐴𝐻2−3 + ⋯+ (𝐻2 − 1)𝐼)𝐵  

(15) 

From Equation (15), all required coefficient and variables 

in Equation (14) are calculated. Now, by deriving the 

relation to the unknown parameters, we obtain: 

μ1(𝑘) = 𝑆𝑦𝑦(𝑘) + 𝑆𝐿𝐿(𝐾) + 𝑆𝑊𝑊(𝑘)  (16) 

In this regard 

𝑆𝑦 = 𝑄(𝑄3𝑀12 − 𝑄2𝑀11)(1-𝛼𝐻1)+Q(𝑄3𝑀22 −

𝑄2𝑀21)(1 − 𝛼𝐻2) 

𝑆𝐿 = 𝑄(𝑄3𝑀12 − 𝑄2𝑀11)𝐶(𝐴𝐻1 − 𝐼)+Q(𝑄3𝑀22 −
𝑄2𝑀21)𝐶(𝐴𝐻2 − 𝐼) 

𝑆𝑤 = −𝑆𝑦                            

𝑄1 = 𝑀11
2 + 𝑀21

2                 

𝑄2 = 𝑀12
2 + 𝑀22

2                 

𝑄3 = 𝑀11𝑀12 + 𝑀21𝑀22 

Q=1/(𝑄1𝑄2 − 𝑄3
2)    

(17) 
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Using the above relationships, we can write the 

following relation for control effort : 

u(k)= μ1(𝑘) = 𝑆𝑦𝑦(𝑘)+𝑆𝐿𝐿(𝑘) + 𝑆𝑤𝑤(𝑘) (18) 

Note that only the parameter (μ1(𝑘)) can be specified if 

(Q) exists, so in selecting the free controller parameters, 

𝐻1 and 𝐻2, care should be taken to select the matrix (Q) 

would have existed. There are three main factors that can 

affect the output temperature of the boiler: load, steam 

flow and boiler internal steam temperature. The effect of 

load is more than others. Each change in load leads to a 

different behavior from the boiler. In such a way that for 

each load, the boiler will have a different conversion 

function. Other factors such as: the temperature of the 

injected water, the temperature of the injected steam into 

the super heater, the pollution on the walls, the sediment 

in the steam pipes, etc. can all be of uncertainty sources. 

Five local transfer functions with different load 

percentages are summarized in Table 1. For five different 

load modes, five transfer functions can be obtained. 

Thus, all five transfer function can be modeling in one 

model by using recurrent RBFN. The prposed recurrent 

RBFN is shown in Figure 1. 

In the middle layer containing RBF neurons, the 

neuron-governing relationship is as follows: 

∅𝑖(𝑢) = 𝑒𝑥𝑝 (−
‖𝑢−𝑐𝑖‖

2

𝜎𝑖
2 ) ,            𝑖 = 1,… ,𝑚  (19) 

 

 
TABLE 1. Five local transfer function 

Load % Equivalent Transfer Function 

30 
−11.24

1 + 124.4𝑠
𝑒−115𝑠 

40 
−10.16

1 + 91.8𝑠
𝑒−101𝑠 

60 
−9.55

1 + 80.7𝑠
𝑒−94.5𝑠 

80 
−7.61

1 + 78.1𝑠
𝑒−82.1𝑠 

100 
−4.59

1 + 53.83𝑠
𝑒−58.5𝑠 

 

 

 
Figure 1. The proposed recurrent RBFN 

where σi ∈ R the width of the neuron is, ci =
[c1i, c2i, … , cni]

T is the center vector of the neuron and 
u = [u1, u2, … , un, ∅(𝑢(𝑘 − 1))]T   is the network input. 

In the last layer, the output is calculated. 

𝑦 = ∑ 𝑤𝑖
𝑚
𝑖=1 ∅𝑖(𝑢)  (20) 

Here the output from the given weight of the nonlinear 

bases is ∅𝑖(𝑢) which it must be orthogonal. In the 

structural training (Self-Organaizing) of the radial basis 

function neural network, there is initially only one 

neuron. Upon entering the first data, the Euclidean 

distance of this data from the center of the neuron is 

calculated. If this data belonged to an existing neuron 

then the next data is coming, but if it did not belong, a 

new neuron will be created for this data. This process of 

adding neurons continues until the end of training and 

applying the latest data. For more details of RBFN 

training one can refer to literature [7]. 
The overall goal is to reduce the error between the 

actual system and the model. 

𝑒(𝑘 + 𝑖) = 𝑦(𝑘) − 𝑦𝑚(𝑘)   (21) 

The structure of the proposed control system is shown in 

Figure 2. 

The process is as follows: first, all transfer functions 

(here are 5 functions) are modeled by a single recurrent 

RBF neural network (green block in Figure 2), and so this 

neural network simultaneously includes all models. 

Therefore, if the boiler load changes, the recurrent RBF 

neural network immediately generates the appropriate 

signal and assists the controller. The boiler block (red 

block in Figure 2) contains the transfer functions in Table 

1. The feedback correction block (orange block in Figure 

2) performs the calculations for Equation (10). Finally, 

the optimization algorithm (blue block in Figure 2) 

performs the calculations for Equation (18). 

 

 

4. SIMULATIONS 
 

In this section, simulation of the boiler with the proposed 

control method in MATLAB software is discussed. The 

parameters of boiler are shown in Table 2. 

In continue, the performance of the proposed control 

system, i.e. the neural network-based MPC, as well as the 

 

 

 
Figure 2. The structure of the proposed control system 
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TABLE 2. System parameter values 

100 MW Nominal power 

120 𝑘𝑔/𝑠𝑒𝑐 Vapor flow rate 

120 𝑘𝑔/𝑐𝑚2 Steam pressure 

510 ℃ Steam temperature 

30 𝑚3 Drum size 

30000 𝑘𝑔 Water mass 

1500 𝑘𝑔 Steam mass under pressure 

37 ℃ Inlet water temperature 

12 𝑘𝑔/𝑠𝑒𝑐 Fuel flow rate 

 

 
performance of the conventional MPC, are compared. It 

is expected that in our proposed method, the existence of 

a RBF neural network will lead to a more precise 

handling of the uncertainty and follow the changes well, 

and it should perform better than the traditional method. 

Figure 3 shows the boiler temperature control by 

recurrent RBFN-based MPC and traditional MPC 

without load uncertainty. 

For greater clarity, part of Figure 3 is enlarged and 

shown in Figure 4. 

According to Figures 3 and 4, the complete 

superiority of the proposed MPC method based on RBFN 

over the traditional MPC is clear. As can be clearly seen 

in Figure 4, in the traditional MPC method the boiler 

temperature range is from 870 to 923, while in the RBFN- 

based  method  this  range  is  from  890  to  905.  In  other 

 
 

 
Figure 3. Simulation results of recurrent RBFN-MPC and 

traditional MPC for temperature boiler control without any 

uncertainty 
 

 

 
Figure 4. Zoom in on part of Figure 3 

words, the RBFN softens some of the controller 

switching. In continue, the performance of both 

traditional MPC and RBFN-based MPC are challenged 

with  uncertainty  in  load.  It  is  assumed  that  the  boiler 

load  will  change  randomly  by ±15%.  Figure  5  shows 

the  boiler  temperature  control  by recurrent RBFN-

based MPC and traditional MPC ±15% in load 

uncertainty. 

For greater clarity, part of Figure 5 is enlarged and 

shown in Figure 6. 

In order to evaluate the performance of the controllers 

by increasing the load uncertainty, the uncertainty value 

of the boiler load is increased randomly to ±25%. Figure 

7 shows the boiler temperature control by recurrent 

RBFN-based MPC and traditional MPC ±25% in load 

parameter uncertainty. 

For greater clarity, part of Figure 7 is enlarged and 

shown in Figure 8. 

Finally, increase the uncertainty on the boiler load to 

±50%  and you will see the result in Figure 9. 

 
 

 
Figure 5. Simulation results of recurrent RBFN-MPC and 

traditional MPC for temperature boiler control with ±15% 

in load uncertainty 
 

 

 
Figure 6. Zoom in on part of the Figure 5 

 

 

 
Figure 7. Simulation results of recurrent RBFN-MPC and 

traditional MPC for temperature boiler control with ±25% 

in load uncertainty 
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Figure 8. Zoom in on part of the Figure 7 

 

 

 
Figure 9. Simulation results of recurrent RBFN-MPC and 

traditional MPC for temperature boiler control with ±50% 

in load uncertainty 

 

 

For greater clarity, part of Figure 9 is enlarged and 

shown in Figure 10. 

From Figures 3 to 10 can be conclude that if the more 

uncertainty of the load, the greater the superiority of the 

recurrent RBFN-MPC over the traditional MPC. When 

the uncertainty reaches ±50%, the traditional MPC is 

practically useless, because the teprarature changes from 

800 ℃ to 1000 ℃ instead of being fixed at 900 ℃. See 

Table 3 for further comparison of the proposed method 

with some of the existing works. In this table, the 

measurement criterion is the root mean square tracking 

error (RMSE) [20]. 

As shown in Table 3, the use of computational 

intelligence (neural network, fuzzy logic, etc.) as a 

complement to a control system can be very useful. 

Boiler is a highly nonlinear system with uncertain 

parameters. As shown in the simulation results, for a real 

boiler can not be considered a fixed model with fixed 

parameters. It seems that the traditional MPC method 

behaves like this, but by combining it with computational 

intelligence, changes can be tracked immediately. This 

becomes especially critical when the rate of change is 

 

 

 
Figure 10. Zoom in on part of Figure 9 

TABLE 3. Comparison of the proposed method with some of 

the existing works 

 
No. 

load 

±𝟏𝟓% 

uncertainty 

±𝟐𝟓% 

uncertainty 

±𝟓𝟎% 

uncertainty 

Method 

of [23] 
2.271 2.441 3.318 4.776 

Method 

of [25] 
1.421 1.948 2.559 2.985 

Method 

of [37] 
1.258 1.882 2.052 2.891 

Method 

of [42] 
1.326 1.691 2.174 2.221 

Alone 

MPC 
1.545 1.962 2.498 2.993 

Our 

proposed 

method 

0.855 1.121 1.573 1.989 

 

 

high and traditional methods do not respond well at all. 

Neural networks, if properly trained with appropriate and 

useful data, can well approximate a function and estimate 

future moments, and this is very useful in controlling 

systems. 
 

 

5. CONCLUSION 
 

In this paper, a combination of computational 

intelligence with model predictive control was used to 

control the power plant boiler. In this method, a self-

organazing recurrent radial base function neural network 

was used for online modeling of the boiler. First, several 

local transfer functions of the boiler were created using 

the Laguerre polynomials method, then the recurrent 

RBF neural network was used to approximate these 

models. Laguerre polynomial coefficients are calculated 

and updated by the recursive least squares algorithm 

(RLS). The recurrent RBFN can estimate future moments 

for the model predictive method and use it to accurately 

control the boiler. As observed in the simulation results, 

when we have uncertainty in the load, the neural 

network-based model predictive control works better 

than the traditional model predictive control, especially 

when the uncertainty is high. All numerical values of the 

parameters and their mathematical relations are based on 

a real boiler system. Therefore, the proposed method in 

this paper has the capability to implement hardware and 

practice. 
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Persian Abstract 

 چکیده 
ارائه شده است. برای اولین بار در این مقاله   ی برای کنترل دمای دیگ بخار نیروگاه  (RBFN-MPC)تابع پایه شعاعی  بینی مبتنی بر شبکهکنترل پیش  در این مقاله، مدل جدید

جهت   (RLS) های مختلف بار استفاده شده است. از روش حداقل مربعات بازگشتیهای محلی دیگ بخار بر اساس حالتای لاگر برای بدست آوردن مدلاز چند جمله

با مکانیزم خودتنظیمی استفاده شده و از آن برای    بازگشتی  شعاعی  تابع پایهاز شبکه عصبی  سازی محلی  شود. سپس برای مدلای لاگر استفاده مییب چند جملهاضربروزرسانی  

شود، بنابراین مدل دیگ بخار  سازی استفاده میهای لایه پنهان در لحظه گذشته در مدل، از خروجی گره بازگشتی RBFN در این  .شودتخمین رفتار آینده دیگ بخار استفاده می

شوند. در بازگشتی شناسایی می  RBFN ها بلافاصله توسطهای مختلفی به دیگ بخار اضافه شده و این عدم قطعیتکند. عدم قطعیتیگ بخار واقعی رفتار می دقیقاً مانند یک د

عملکرد    بازگشتی    RBFN نی برمبت MPC دهد کهسازی نشان می سنتی )بر اساس مدل ریاضی دیگ بخار( مقایسه شده است. نتایج شبیه MPC ، روش پیشنهادی باسازیشبیه

ست.  مدل همیشه ثابت ا  ،، در حالی که به روش سنتیمیک دیگ بخار توسط شبکه عصبی استمبتنی بر مدل ریاضی دارد. این به دلیل ردیابی آنلاین دینا MPC بهتری نسبت به

 شود. بیشتر مشخص میای موجود ه، تفاوت بین روش پیشنهادی ما و روش با افزایش میزان عدم اطمینان

 


