Predictive Modelling and Optimization of Double Ring Electrode Based Cold Plasma Using Artificial Neural Network

Document Type : Original Article

Authors

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

Abstract

Cold Atmospheric Pressure Plasma (CAP) is very potent and impactful technology implemented for both technological and biomedical applications. This paper focuses on the implementation of artificial neural network (ANN) for a novel double ring electrode based cold atmospheric pressure plasma which is to operated only in the glow discharge region for its application in biomedical field. ANN inherently helps in visualizing the effective output parameters such as peak discharge current, power consumed, jet length (with sleeve) and jet length (without sleeve) for given set of input parameters of supply voltage and supply frequency using machine learning model. The capability of the ANN model is demonstrated by predicting the output parameters of the CAP beyond the experimental range. Finally, the optimized settings of supply voltage and supply frequency will be determined using the composite desirability function approach to simultaneously maximize the peak discharge current, jet length (with sleeve) and jet length (without sleeve), and minimize the power consumption.

Keywords

Main Subjects


  1. Laroussi M, Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications. Applied Physics Letters. 2005;87(11). https://doi.org/10.1063/1.2045549
  2. Janda M, Martišovitš V, Hensel K, Machala Z. Generation of antimicrobial NO x by atmospheric air transient spark discharge. Plasma Chemistry and Plasma Processing. 2016;36:767-81. https://link.springer.com/article/10.1007/s11090-016-9694-5
  3. Klämpfl TG, Isbary G, Shimizu T, Li Y-F, Zimmermann JL, Stolz W, et al. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Applied and environmental microbiology. 2012;78(15):5077-82. https://doi.org/10.1128%2FAEM.00583-12
  4. Sands BL, Ganguly BN, Tachibana K. A streamer-like atmospheric pressure plasma jet. Applied Physics Letters. 2008;92(15). https://doi.org/10.1063/1.2909084
  5. Girard‐Lauriault PL, Mwale F, Iordanova M, Demers C, Desjardins P, Wertheimer MR. Atmospheric pressure deposition of micropatterned nitrogen‐rich plasma‐polymer films for tissue engineering. Plasma Processes and Polymers. 2005;2(3):263-70. http://dx.doi.org/10.1002/ppap.200400092
  6. Laroussi M. Low-temperature plasmas for medicine? IEEE Transactions on plasma science. 2009;37(6):714-25. http://dx.doi.org/10.1109/TPS.2009.2017267
  7. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Van Dijk J, et al. Plasma medicine: an introductory review. new Journal of Physics. 2009;11(11):115012. https://doi.org/10.1088/1367-2630/11/11/115012
  8. Morrison KA, Asanbe O, Dong X, Weinstein AL, Toyoda Y, Guevara D, et al. Rapid sterilization of cell phones using a novel portable non-thermal plasma device. Plasma Medicine. 2015;5(1). http://dx.doi.org/10.1615/PlasmaMed.v5.i1.50
  9. Mansouri J, Harrisson S, Chen V. Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. Journal of Materials Chemistry. 2010;20(22):4567-86. https://doi.org/10.1039/B926440J
  10. Qi K, Daoud WA, Xin JH, Mak CL, Tang W, Cheung W. Self-cleaning cotton. Journal of Materials Chemistry. 2006;16(47):4567-74. https://doi.org/10.1039/B610861J
  11. Deepak GD, Joshi N, Pal U, Prakash R. Electrical characterization of atmospheric pressure dielectric barrier discharge-based cold plasma jet using ring electrode configuration. Laser and Particle Beams. 2016;34(4):615-20. https://doi.org/10.1017/S0263034616000501
  12. Weltmann KD, Kindel E, von Woedtke T, Hähnel M, Stieber M, Brandenburg R. Atmospheric-pressure plasma sources: Prospective tools for plasma medicine. Pure and Applied Chemistry. 2010;82(6):1223-37. https://doi.org/10.1351/PAC-CON-09-10-35
  13. Von Woedtke T, Reuter S, Masur K, Weltmann K-D. Plasmas for medicine. Physics Reports. 2013;530(4):291-320. https://doi.org/10.1016/j.physrep.2013.05.005
  14. Deepak GD, Joshi N, Prakash R. Model analysis and electrical characterization of atmospheric pressure cold plasma jet in pin electrode configuration. AIP Advances. 2018;8(5). https://doi.org/10.1063/1.5023072
  15. Divya Deepak G, Joshi N, Pal DK, Prakash R. A low power miniaturized dielectric barrier discharge based atmospheric pressure plasma jet. Review of Scientific Instruments. 2017;88(1). https://doi.org/10.1063/1.4974101
  16. Deepak GD, Joshi NK, Prakash R, Pal U. Electrical characterization of argon and nitrogen based cold plasma jet. The European Physical Journal Applied Physics. 2018;83(2):20801. https://doi.org/10.1051/epjap/2018180057
  17. Tanaka H, Ishikawa K, Mizuno M, Toyokuni S, Kajiyama H, Kikkawa F, et al. State of the art in medical applications using non-thermal atmospheric pressure plasma. Reviews of Modern Plasma Physics. 2017;1:1-89. http://dx.doi.org/10.1007/s41614-017-0004-3
  18. Lin L, Yan D, Lee T, Keidar M. Self‐Adaptive Plasma Chemistry and Intelligent Plasma Medicine. Advanced Intelligent Systems. 2022;4(3):2100112. https://doi.org/10.1063/5.0096789
  19. Wan C, Bao H, Chen Z, Lin Q, Liu S, Wu W, et al. The prediction of nitric oxide conversion by dielectric barrier discharge using an artificial neural network model. Journal of the Energy Institute. 2022;101:96-110. https://doi.org/10.1016/j.fochms.2022.100132
  20. Nazari RR, Hajizadeh K. Modeling the performance of cold plasma in CO2 splitting using artificial neural networks. AIP Advances. 2022;12(8). http://dx.doi.org/10.1016/j.conbuildmat.2015.07.074
  21. Jaddu S, Abdullah S, Dwivedi M, Pradhan RC. Multipin cold plasma electric discharge on hydration properties of kodo millet flour: Modelling and optimization using response surface methodology and artificial neural network–Genetic algorithm. Food Chemistry: Molecular Sciences. 2022;5:100132. https://doi.org/10.1016/j.sciaf.2020.e00413
  22. Gholami A, Bonakdari H, Fenjan SA, Akhtari AA. Flow variables prediction using experimental, computational fluid dynamic and artificial neural network models in a sharp bend. International Journal of Engineering, Transaction A: Basics, . 2016;29(1):14-22. 10.5829/idosi.ije.2016.29.01a.03
  23. Rajeev D, Dinakaran D, Kanthavelkumaran N, Austin N. Predictions of tool wear in hard turning of AISI4140 steel through artificial neural network, fuzzy logic and regression models. International Journal of Engineering, Transaction A: Basics. 2018;31(1):32-7. 10.5829/ije.2018.31.01a.05
  24. Nateghi-A F, Ahmadi MH. Prediction of engineered cementitious composite material properties using artificial neural network. International Journal of Engineering, Transaction B: Applications. 2019;32(11):1534-42. 10.5829/IJE.2019.32.11B.04
  25. Harrington EC. The desirability function. Industrial quality control. 1965;21(10):494-8.
  26. Derringer G, Suich R. Simultaneous optimization of several response variables. Journal of quality technology. 1980;12(4):214-9. https://doi.org/10.1080/00224065.1980.11980968
  27. Devarajaiah D, Muthumari C. Evaluation of power consumption and MRR in WEDM of Ti–6Al–4V alloy and its simultaneous optimization for sustainable production. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2018;40:1-18. http://dx.doi.org/10.1007/s40430-018-1318-y