
IJE TRANSACTIONS A: Basics  Vol. 37 No. 01, (January 2024)   83-93 
 

  
Please cite this article as: Bhat SK, Deepak GD. A New Comprehensive Model for Integrating Environmental, Economic, and Social Performance 
of Deep and Large-scale Open-Pit Copper Mines. International Journal of Engineering, Transactions A: Basics. 2024;37(01): 83-93. 

 
International Journal of Engineering 

 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

Predictive Modelling and Optimization of Double Ring Electrode Based Cold Plasma 

Using Artificial Neural Network 
 

S. K. Bhat, G. D. Deepak* 
 
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 

Karnataka, India 
 

 

P A P E R  I N F O   

 
 

Paper history: 
Received 11 July  2023 
Received in revised form 14 August 2023 
Accepted 26 August 2023

 
 

Keywords:  
Artificial Neural Network 
Cold Plasma 
Machine Learning 
Biomedical Devices 
Desirability Function Analysis 
Ring Electrode 

 

A B S T R A C T  
 

 

Cold Atmospheric Pressure Plasma (CAP) is very potent and impactful technology implemented for both 
technological and biomedical applications. This paper focuses on the implementation of artificial neural 

network (ANN) for a novel double ring electrode based cold atmospheric pressure plasma which is to 

operated only in the glow discharge region for its application in biomedical field. ANN inherently helps 
in visualizing the effective output parameters such as peak discharge current, power consumed, jet length 

(with sleeve) and jet length (without sleeve) for given set of input parameters of supply voltage and 

supply frequency using machine learning model. The capability of the ANN model is demonstrated by 
predicting the output parameters of the CAP beyond the experimental range. Finally, the optimized 

settings of supply voltage and supply frequency will be determined using the composite desirability 

function approach to simultaneously maximize the peak discharge current, jet length (with sleeve) and 

jet length (without sleeve), and minimize the power consumption. 

doi: 10.5829/ije.2024.37.01a.08 
 

 
1. INTRODUCTION1 
 
Plasma is considered the fourth state of matter and is 

considered as ionized gas (1). Plasma is generated due to 

the association of strong electromagnetic field, gas and 

heat. Generally, reactive nitrogen and oxygen species 

(RONS) (2) have a main role in atmospheric pressure 

plasma formation (APP). As the key components of air 

are oxygen and nitrogen, reactive oxygen species (ROS) 

comprise of hydroxide and oxygen radicals, while 

nitrogen oxides are included as reactive nitrogen species 

(RNS) (3). The APP generates neutral reactive species, 

free electron, atom such as oxygen (O) and molecules, 

radicals and nitrogen oxide (NO) (4-6). Cold atmospheric 

pressure plasma (CAP) is applications in many fields 

such as: sterilization (6), surface modification (7), food 

safety (8), water purification (9), textiles (10), medical 

(11) and others. The effect of CAP is very unique and it 

is for specific application. 

Amongst the various technologies implemented for 

generating atmospheric cold plasma, there are two major 
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categories which are dominant in clinical and preclinical 

research in the field of plasma medicine which includes 

plasma jets (12-15) and dielectric barrier discharge 

(DBD) (16, 17). In DBD’s the plasma is ignited in the 

gap between the powered and ground electrode. There are 

various types of DBD’s such as volume DBD, Surface 

DBD used for various applications. The plasma jet 

experimental typically comprises of tube-like structure 

such as quartz tube, the plasma is generated using a 

working gas such as argon that would flow inside this 

tube. There are various electrode designs such as DBD-

like jets, DBD jets and single electrode jets. The gas flow 

inside the quartz tube enables the resulting plasma to be 

carried out and is focused on the target material to be 

treated. Mostly noble gases are used as working gases for 

the generation of plasma jet. 

ANN has been applied successfully in plasma 

medicine; Lin et al. (18) implemented ANN approach for 

predicting gas compositions and gas temperature using 

spontaneous emission spectroscopy, wherein the ANN 

output is used to control the power consumption of the 
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device and gas injection rate, thereby optimizing the 

plasma chemistry. Furthermore, Wan et al. (19) 

implemented an ANN model to predict NO conversion 

by DBD in the N2/O2/NO system. Their ANN model 

results indicated that the primary factor influencing the 

production of NO2 is the concentration of NO at the inlet, 

responsible for 36.22% of the effect. The other factors 

that impacted NO2 production were discharge power at 

23.52% and residence time at 26.25 %. 

The cold plasma technology involves various 

important operating parameters, viz., supply voltage 

(SV), supply frequency (SF), pulse discharge current 

(PDC), jet length and power consumption (P) (11). From 

the perspective of development of CAP devices, it is of 

vital importance to determine the optimum levels of input 

parameters of supply voltage and supply frequency to 

achieve the desired levels of pulse discharge current, jet 

length and power consumption. Furthermore, since 

experimental tests usually have certain limitations with 

respect to the range of parameters, an accurate and 

reliable predictive model can be useful to make 

performance predictions beyond the range of parameters 

considered in the experiments. Recently, one of the 

robust and popular machine learning techniques called 

artificial neural network (ANN) has been implemented to 

predict the efficiency of CAP-based technologies in 

terms of the input parameters towards applications such 

as plasma treatment and CO2 splitting (20, 21). However, 

there is a paucity of research in the literature on 

development of predictive models for the fundamental 

performance characteristics such as PDC, jet length and 

power consumption. This paper aims to develop an ANN 

model for the novel double ring electrode based cold 

atmospheric pressure plasma using a benchmark 

experimental data (11) to train, test and validate the 

model. The robustness of the neural network to model the 

physics of the cold plasma device is demonstrated by 

making performance predictions beyond the range of the 

experimental data used for training the model. Finally, 

the well-established statistical method of desirability 

function analysis (DFA) will be used to perform the 

multi-response optimization to determine the optimum 

settings of the input parameters for the best performance. 

 

 

2. GEOMETRY AND EXPERIMENTAL SETUP 
 

The double ring electrode configuration (11)examined in 

this paper comprises of quartz tube with nozzle as shown 

in Figure 1. Ring electrodes are the two metal sleeves that 

are put on top the nozzle indicated as 3 in Figure 1. One 

of these electrodes is connected to supply and another 

electrode is grounded. The nozzle outlet diameter is 3 

mm and has been indicated as 2 (see Figure 1). The 

working gas used Argon enters through the inlet of quartz 

tube indicated as 1 (see Figure 1). The outer diameter and 

length of quartz tube is 25 mm and 155 mm, respectively. 

The quartz tube thickness is 1.5 mm. The diameter and 

axial length of ring electrodes are 4 mm and 18 mm 

respectively. The ring electrodes are separated by 

distance of 3 mm as indicated -3 in Figure 1. A quartz 

sleeve of 4 mm diameter and 15 mm length was placed 

on the nozzle of the quartz tube (see Figure 2) to observe 

the length of plasma jet without the effect of surrounding 

air. To examine the plasma jet length without the effect 

of surrounding air, a quartz sleeve of 15 mm length and 

4 mm diameter was placed on nozzle of quartz tube 

(Figure 2). Jet length was examined for both without and 

with quartz sleeve.  

The double ring electrode implemented in this paper 

has been subjected to supply voltages upto 6 kV and 

supply frequencies upto 25 kHz. Working gas employed 

was Argon as shown in Figure 2. The V-I characteristic 

of the developed DBD-based cold plasma jet (Figure 2) 

has been studied and the consumption of power has been 

analyzed at various input combinations (supply voltage 

and frequency). The supply frequency and voltage have 

been varied from 10 to 25 kHz and 3.5 to 6 kV, 

respectively. The gas flow rate is fixed at 1 liter/min. The 

experimental results of pulse discharge current (PDC), jet 

length without and with sleeve (JLwoS and JLwS) and 

power (P), for the various supply voltage and supply 

frequencies is listed in Table 1. 

In this paper, ANN is implemented for the 

experimental data as listed in Table 1 to analyze and 

 

 

 
Figure 1. Geometry of double ring electrode based cold 

plasma jet using Argon 

 

 

 
Figure 2. Argon based cold plasma jet using double ring 

electrode 
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TABLE 1. Experimental results [11] 

Expt. 

No. 

SV 

(kV) 

SF 

(kHz) 

PDC 

(mA) 

JLwoS 

(mm) 

JLwS 

(mm) 

P 

(W) 

1 3.5 10 152 2 5 0.28 

2 4 10 160 4 7 0.33 

3 4.5 10 176 7 9 0.46 

4 5 10 144 12 15 0.46. 

5 5.5 10 176 15 21 0.56 

6 6 10 192 17 22 0.42 

7 3.5 15 96 4 7 0.33 

8 4 15 112 6 9 0.58 

9 4.5 15 152 8 12 0.58 

10 5 15 144 14 17 0.69 

11 5.5 15 176 18 23 0.78 

12 6 15 232 20 24 0.63 

13 3.5 20 88 6 10 0.59 

14 4 20 128 8 12 0.73 

15 4.5 20 112 12 15 0.82 

16 5 20 152 18 22 1.12 

17 5.5 20 168 20 25 1.04 

18 6 20 184 22 27 0.72 

19 3.5 25 88 8 12 0.94 

20 4 25 96 11 14 0.89 

21 4.5 25 152 12 17 0.88 

22 5 25 128 22 25 0.97 

23 5.5 25 144 24 28 1.27 

24 6 25 216 25 29 1.04 

 

 

predict the output parameters (discharge current, jet 

length (with and without sleeve) and power consumption 

for higher values of supply voltage and supply current for 

the double ring electrode-based argon cold plasma jet. 

 

 

3. ANN APPROACH 
 
Artificial neural network (ANN) is a soft computing 

paradigm which derives its functionality through 

inspiration from the neurons in the biological nervous 

systems. ANN operates with a similar principle of that of 

biological neurons wherein the information processing 

takes place in the individual neurons starting with a 

feedforward training process, also involving a 

backpropagation feedback loop to estimate the errors in 

prediction, to derive a mathematical formulation to 

model the relationship between process parameters and 

the output responses (22).  

 
Figure 3. General architecture of a single hidden layer NN 

model with n neurons 

 

 

In the simplest configuration, a neural network model 

consists of an input layer which consists of the input 

parameters, followed by a hidden layer which consists of 

an arbitrary number of neurons according to the 

requirements of the problem, and finally the output layer 

which is nothing but the list of the output parameters 

(Figure 3). In this study, a multi-layer perceptron ANN 

model was developed using the fitnet function in 

MATLAB (MathWorks, Natick, Massachusetts, USA). 

The multi-layer perception basically falls into the 

category of neural networks with more than one hidden 

layer. To ensure a good predictive accuracy of the model, 

the possibility of having one or more hidden layers was 

investigated. The Levenberg-Marquardt algorithm was 

employed for training the model (23). The inputs are the 

two control parameters, i.e., SV and SF; and the outputs 

are the four response parameters, PDC, JLwS, JLwoS, 

and P. 

The input data was divided into three sets such that 

70% of it was used for training and remaining 15% each 

were used for testing and validation of the network. 

Numerous trials were conducted with the number of 

hidden layers and the number of neurons in them to arrive 

at a model which provided a good descriptive 

performance (refer Appendix for details), which is then 

made use to make predictions beyond the experimental 

range of control parameters. 

Each neuron in the artificial neural network consists 

of three components, weights (𝑤𝑘,𝑗), biases (𝑏𝑘), and an 

activation function. The weights and biases are fed to 

individual neurons along with the inputs to obtain the 

mathematical operation in each neuron as Equation (1) 

(24): 

,

1

n

k k k j j

j

U b w I
=

= +   (1) 

where, 𝑛 is the number of inputs and 𝑘 signifies the 𝑘𝑡ℎ 

neurons in the hidden layer. The same equation can be 

written in the matrix form as Equation 2 (22): 
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(2) 

The inputs and outputs in each neural network are 

typically normalized between [−1,+1]. Finally, the 

overall mathematical relationship to predict the output 

‘Y’ can be written as Equation 3 (22): 

( )
1

m

output layer k k

k

Y b LW f U−

=

= +   (3) 

where, 𝑏𝑜𝑢𝑡𝑝𝑢𝑡−𝑙𝑎𝑦𝑒𝑟  is the output layer weight and 𝐿𝑊𝑘 

is the layer weight matrix. The activation function 𝑓(𝑥) 
is a tan-sigmoid (tansig) or hyperbolic tangent function 

as shown by Equation 4 (23): 

( ) 2

2
1

1 k
k U

f U
e−

= −
−

 (4) 

In this study, the tansig function was used for the 

connections between the input and hidden layers and the 

hidden layers to output layers [20-22]. The descriptive 

accuracy of the model was evaluated based on the 

coefficient of determination (R2), which is given by 

Nateghi- and Ahmadi (24): 
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(5) 

where, 𝑦𝑖  and 𝑦𝑒𝑥𝑝−𝑖 are the model predictions and the 

corresponding experimental data, respectively, and 

�̅�𝑒𝑥𝑝−𝑖 indicates the mean of the experimental response, 

for a particular response parameter. 
 

 

4. DESIRABILITY FUNCTION ANALYSIS 
 

Desirability Function Analysis (DFA) is a statistical 

method used for multi-response optimization, 

particularly in the field of experimental design and 

quality improvement. It provides a way to simultaneously 

optimize multiple responses or variables in a process or 

system. The main idea behind DFA is to convert 

individual response variables into a single overall 

desirability value.  

Firstly, the individual desirability function for each 

factor setting is calculated. This is called as the 

desirability index (DI). Next, the overall desirability for 

a particular combination of factor settings, termed as 

composite desirability index (CDI), is calculated as the 

geometric mean of the individual desirability values. This 

approach ensures that all responses contribute equally to 

the overall desirability assessment [25-27]. 
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(7) 

The goal of DFA is to find the factor settings that 

maximize the overall desirability (or CDI). This can be 

achieved using optimization techniques such as response 

surface methodology. By optimizing the overall 

desirability, DFA helps identify the factor settings that 

simultaneously optimize multiple responses and improve 

the quality or performance of a process or system. 

The principle of DFA first propounded by 

Harrington in 1965 (25) was refined and brought to its 

presently used form by Derringer and Suich in 1980 (26). 

The method of DFA is enunciated as follows. Firstly, 

based on the criteria of whether a response variable needs 

to be maximized (larger-the-better) or minimized 

(smaller-the-better), the desirability index (DI) for each 

factor setting combination is calculated using the 

Equations 6 and 7, respectively (27). 

Equations 6 and 7, 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥  indicate the 

minimum and maximum of the response 𝑦𝑖 . The 

exponents 𝑠 and 𝑟 are the weights assigned to each 

response variable. Here, we assign equal weightage to all 

the response, implying, 𝑠 = 𝑟 = 0.25. In this study, the 

PDC and P were subjected to the condition of smaller-

the-better, whereas the larger-the-better condition was 

imposed on JLwS and JLwoS. Now, the composite 

desirability index (CDI) is computed as follows (27): 

( )31 2
1/

,1 ,2 ,3 ,
k

k
w ww w

i i i i i kCDI d d d d=      (8) 

where, 𝑘 indicates the number of responses (here, 𝑘 = 4), 

𝑑𝑖,𝑘
𝑤𝑘  represents the desirability index of the 𝑘𝑡ℎ response 

and 𝑤1, 𝑤2, 𝑤3,…, are the weightages assigned to 

individual responses, such that ∑ 𝑤𝑖
𝑘
𝑖 = 1. Here, we 

assign equal weightage, implying, 𝑤𝑖 = 0.25. Now, the 

mean of factor effect at each level is analyzed to obtain 

the best combination of the control parameters to achieve 

the maximum possible CDI (27). The maximum possible 

CDI signifies the optimized control parameter setting 

combination at which the multiple responses are 

achieving their best possible combinatorial outcome. 

 
 
5. RESULTS AND DISCUSSION 
 
5. 1. Descriptive and Predictive Modeling using 
Artificial Neural Network       The artificial neural 

network for modeling the performance of the double ring 

electrode based cold plasma jet was developed by a trial-

and-error approach by varying the number of hidden 

layers and the number of neurons in them. The number 

of layers were varied from 1 to 3, and in each layer, the 
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number of neurons were changed from 3 to 20. During 

these trials, the descriptive accuracy of the model was 

evaluated by means of the coefficient of determination 

(R2) for each of the four performance parameters (PDC, 

JLwS, JLwoS and P). It was found that, a two-layered 

ANN with 8 and 12 neurons, in the first and second 

hidden layers, respectively (Figure 4), provided the best 

descriptive accuracy with R2 > 0.96 for all the parameters. 

Figure 5 graphically depicts the descriptive accuracy of 

the ANN model for the parameters. Table 2 (Expt. No. 1 

– 24) lists the numerical predictions of the ANN model 

for the experimental data shown in Table 1.  

A robust model not only needs to accurately model 

the experimental data, but also make predictions for new 

set of data beyond the experimental range, while being 

consistent with the physics of the problem. After 

confirming the descriptive accuracy of the ANN model, 

its predictive capability is investigated by forecasting the 

performance parameters beyond the range of control 

parameters used in the experiments. Table 2 (Expt. No.25 

– 56) shows the predictions of the ANN model for 6.5 kV 

≤ SV ≤ 10 kV and 10 kHz ≤ SF ≤ 25 kHz. 

The split of the datasets for training, testing and 

validation steps were chosen randomly in each trial using 

the MATLAB function dividerand, which splits the data 

based on random indices. For the optimum model (2-8-

20-4) the expt no. 1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

17, 18, 20, 21, 23 were used for training, expt no. 16, 29, 

22, 24 were used for validation and remaining (2, 4, 6, 

19) were used for testing purposes. 

From Table 2, for (3 kV, 10 kHz) the power 

consumed in the plasma is 0.33 W with short plasma jet 

lengths (5.1 mm (JLwS), 2.1 mm (JLwoS)), as the energy 

is consumed by the seed electrons for plasma generation. 

Whereas, when supply voltage approaches 6 kV, 10 kHz 

then power consumption is 0.56 W with longer jet lengths 

(26.1 mm (JLwS), 20.3 mm (JLwoS)) indicating that 

power is utilized for plasma generation. It is also 

observed that plasma jet lengths with sleeve for most 

cases of supply voltages and frequency (3.5 kV – 10 kV, 

 

 

 
Figure 4. ANN architecture with ‘2-8-20-4’ topology 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Comparison of ANN predictions for (a) PDC, (b) 

JLwS, (c) JLwoS, (d) P, with the corresponding 

experimental responses 
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TABLE 2. ANN predictions for within the range of 

experimental data provided in Table 1 and beyond the range of 

supply voltage (6 kV ≤ SV ≤ 10 kV and 10 kHz ≤ SF ≤ 25 kHz) 

Expt. 

No. 

SV 

(kV) 

SF 

(kHz) 

PDC 

(mA) 

JLwoS 

(mm) 

JLwS 

(mm) 

P 

(W) 

1 3.5 10 152.0 5.1 2.1 0.33 

2 4 10 165.9 5.4 2.4 0.38 

3 4.5 10 176.0 9.0 7.0 0.46 

4 5 10 134.4 15.7 13.6 0.53 

5 5.5 10 176.0 21.0 15.0 0.55 

6 6 10 229.1 26.1 20.3 0.56 

7 3.5 15 96.0 7.0 4.0 0.39 

8 4 15 112.0 9.0 6.0 0.52 

9 4.5 15 152.0 12.0 8.0 0.62 

10 5 15 144.0 17.0 14.0 0.70 

11 5.5 15 176.0 23.0 18.0 0.77 

12 6 15 231.9 24.0 20.0 0.63 

13 3.5 20 88.1 10.0 6.0 0.59 

14 4 20 128.0 12.0 8.0 0.70 

15 4.5 20 112.0 15.0 12.0 0.85 

16 5 20 152.0 22.0 18.0 1.07 

17 5.5 20 168.0 25.0 20.0 1.03 

18 6 20 184.0 27.0 22.0 0.74 

19 3.5 25 89.1 10.7 9.1 0.82 

20 4 25 96.0 14.0 11.0 0.88 

21 4.5 25 152.0 17.0 12.0 0.87 

22 5 25 128.0 25.0 22.0 1.04 

23 5.5 25 144.0 28.0 24.0 1.18 

24 6 25 216.0 28.9 24.9 1.06 

25 6.5 10 232.0 26.6 22.5 0.53 

26 7 10 232.0 26.1 23.2 0.52 

27 7.5 10 232.0 25.7 23.5 0.51 

28 8 10 232.0 25.5 23.6 0.50 

29 8.5 10 232.0 25.4 23.6 0.50 

30 9 10 232.0 25.4 23.6 0.50 

31 9.5 10 232.0 25.4 23.6 0.50 

32 10 10 232.0 25.4 23.6 0.50 

33 6.5 15 232.0 25.6 22.9 0.54 

34 7 15 232.0 25.8 23.4 0.52 

35 7.5 15 232.0 25.7 23.5 0.51 

36 8 15 232.0 25.6 23.6 0.51 

37 8.5 15 232.0 25.5 23.6 0.50 

38 9 15 232.0 25.5 23.6 0.50 

39 9.5 15 232.0 25.4 23.6 0.50 

40 10 15 232.0 25.4 23.6 0.50 

41 6.5 20 220.0 27.7 23.5 0.56 

42 7 20 229.2 27.5 23.6 0.52 

43 7.5 20 231.5 27.1 23.4 0.51 

44 8 20 231.9 26.8 23.3 0.51 

45 8.5 20 232.0 26.5 23.3 0.51 

46 9 20 232.0 26.2 23.4 0.51 

47 9.5 20 232.0 26.0 23.5 0.51 

48 10 20 232.0 25.9 23.5 0.51 

49 6.5 25 223.7 29.0 25.0 0.85 

50 7 25 222.9 29.0 25.0 0.74 

51 7.5 25 220.7 28.9 24.9 0.67 

52 8 25 217.8 28.9 24.9 0.62 

53 8.5 25 216.2 28.8 24.7 0.58 

54 9 25 218.1 28.6 24.5 0.55 

55 9.5 25 223.4 28.3 24.2 0.53 

56 10 25 228.6 27.8 23.8 0.52 

 

 

10 kHz – 25 kHz) is longer as compared to jet length 

without sleeve as seen in Table 2. This is because the 

sleeve shields the plasma jet coming out from 

electronegative gases such as water vapor that impede the 

propagation of the plasma jet. The power consumed by 

the plasma jet increases as the supply voltage and 

frequency reaches up to 6 kV, 25 kHz (1.06 W). Any 

higher supply voltage resulted in the power being lost in 

heating of dielectric tube and not utilized in the plasma 

generation which is clearly seen in Table 2 indicating the 

decrease in power consumed (0.85 W at 6.5 kV, 25 kHz). 

It can be further seen from Table 2 that at higher 

voltages of (6.5 kV, 10 kHz – 25 kHz) there is only 

variation of power consumption (0.53 W – 0.85 W) by 

the plasma as most of the power supplied is not utilized 

in the plasma generation but lost in the dielectric material 

as thermal dissipation, leading to heating of the dielectric 

tube. However, at (6.5 kV, 10 kHz – 25 kHz) the plasma 

jet length both with and without sleeve increases (26.6 

mm – 29 mm (JLwS), 22.5 mm – 25 mm (JLwoS)) with 

increase in supply frequency. This is due to the higher 

energy absorbed by the seed electrons at higher supply 

frequency (20 kHz – 25 kHz) resulting in longer jet 

lengths as seen in Table 2. 

A similar result has been observed at (7.5 kV, 10 kHz 

– 25 kHz) where there is only slight variation in the 

power consumed (0.51 W – 0.67 W) due to supply power 

being lost in thermal dissipation of the material. Further 

higher voltages of 8.5 kV – 10 kV (10 kHz – 25 kHz) also 

show only a slight variation in the power consumption as 

the supply power is lost as thermal dissipation. However, 

at (7.5 kV, 10 kHz – 25 kHz) the plasma jet length both 
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with and without sleeve increases (25.7 mm – 28.5 mm 

(JLwS), 22.5 mm – 25 mm (JLwoS)) with increase in 

supply frequency. This is due to the higher energy 

absorbed by the seed electrons at higher supply 

frequencies (20 kHz – 25 kHz) resulting in longer jet 

lengths as seen in Table 2. 

But at supply voltage of (8.5 kV – 10 kV, 25 kHz) 

there is hardly any variation of power consumed as seen 

in Table 2; in fact, the power consumed reduces from 

0.58 W (8.5 kV/25 kHz) to 0.52 W (10 kV/25 kHz) due 

to power supply lost in thermal dissipation of dielectric 

material and also as the plasma discharge approaches the 

arc discharge region which is not suitable for biomedical 

applications. Due to this thermal dissipation heat loss at 

(8.5 kV – 10 kV, 25 kHz) it must be observed that there 

is a decrease in plasma jet length (28.8 mm – 27.8 mm 

(JLwS), 24.7 mm – 23.8 mm (JLwoS)) which is evidently 

indicating that the power supply is not being utilized in 

the generation of plasma. 

 

5. 2. Multi-Response Optimization using DFA and 
Optimum Level Prediction using ANN       For the 

multi-response optimization, firstly, the desirability 

indices (𝑑𝑖) are calculated using Equations 6 and 7. The 

parameters JLwS and JLwoS were maximized using 

Equation 6, whereas PDC and P were minimized using 

Equation 7. Table 3 shows the 𝑑𝑖 of the four response 

parameters (PDC, JLwS, JLwoS and P) for each 

experimental trial shown in Table 2 under the column of 

individual desirability (𝑑𝑖). Subsequently, the composite 

desirability indices (CDI) are calculated to take 

simultaneously optimize the multiple response 

parameters (Table 3). Finally, the values of CDI are 

ranked in the descending order from highest to the lowest 

value to determine the best possible combination of the 

control parameter to achieve the best performance of the 

double ring electrode based cold plasma jet. It is observed 

that, Expt. No. 22 with SV = 5 kV and SF = 25 kHz 

provides the best performance (highlighted in boldface in 

Table 3). 

To statistically evaluate the factor effects on CDI, its 

main effect plot is shown in Figure 6(a). It is found that 

the mean of means of CDI becomes maximum for the 

control parameter setting of SV = 5 kV and SF = 25 kHz, 

which is consistent with the results of DFA. Further, a 

contour plot of CDI is presented in Figure 6(b), wherein 

its variation is better visualized with respect to the 

interaction of SV and SF. Here, it is observed that SV < 

6 kV results in CDI > 0.6 for almost the entire range of 

SF. However, for SV > 6 kV, the SF needs to be > 23 kHz 

to obtain a higher performance output. Also, it can be 

ascertained that SV = 5 kV and SF = 25 kHz yields the 

best output since it achieves the maximum CDI (> 0.8). 

Regarding the fact that plasma processes require 

several factors, each of which may have a substantial 

effect on plasma production. An artificial neural network 

(ANN) can be used to analyze and predict the impact of 

such elements with different values operational 

parameters (supply voltage & supply frequency). For 

instance, in our study the pulsed power supply cannot be 

operated at higher voltages such as 7 kV- 10 kV due to 

physical constraints of the device. Hence, ANN served to 

be a potent predictive tool for estimating the performance 

of the device with higher level of accuracy at those 

operational range (7-10 kV). Also, ANN is highly 

impactful in analyzing the sensitivity of each of input 

variables with the performance output such as power 

consumption, jet length (with/without sleeve). 

 

 
TABLE 3. Estimated desirability indices using DFA 

Expt. 

No. 

Individual desirability (𝒅𝒊) 
CDI Rank 

PDC JLwoS JLwS P 

1 0.8633 0.0000 0.0000 1.0000 0.0000 46 

2 0.8409 0.5373 0.5430 0.9871 0.7015 31 

3 0.7897 0.6389 0.6828 0.9511 0.7566 29 

4 0.8842 0.8034 0.8120 0.9511 0.8606 7 

5 0.7897 0.9036 0.8671 0.9202 0.8687 4 

6 0.7260 0.9174 0.8987 0.9626 0.8712 3 

7 0.9858 0.5373 0.5430 0.9871 0.7300 30 

8 0.9554 0.6389 0.6458 0.9137 0.7747 26 

9 0.8633 0.7349 0.7147 0.9137 0.8023 21 

10 0.8842 0.8409 0.8499 0.8749 0.8623 6 

11 0.7897 0.9306 0.9133 0.8388 0.8662 5 

12 0.0000 0.9433 0.9406 0.8967 0.0000 46 

13 1.0000 0.6756 0.6458 0.9104 0.7939 24 

14 0.9219 0.7349 0.7147 0.8594 0.8031 20 

15 0.9554 0.8034 0.8120 0.8211 0.8458 9 

16 0.8633 0.9174 0.9133 0.6239 0.8196 18 

17 0.8165 0.9554 0.9406 0.6943 0.8448 11 

18 0.7598 0.9785 0.9657 0.8633 0.8873 2 

19 1.0000 0.7349 0.7147 0.7598 0.7948 23 

20 0.9858 0.7825 0.7909 0.7871 0.8325 13 

21 0.8633 0.8409 0.8120 0.7922 0.8267 15 

  22* 0.9219 0.9554 0.9657 0.7419 0.8913 1 

23 0.8842 0.9894 0.9889 0.0000 0.0000 46 

24 0.5774 1.0000 1.0000 0.6943 0.7957 22 

25 0.0913 0.9738 0.9713 0.9298 0.5323 35 

26 0.0000 0.9684 0.9801 0.9329 0.0000 46 

27 0.0000 0.9636 0.9832 0.9360 0.0000 46 

28 0.0000 0.9612 0.9842 0.9391 0.0000 46 

29 0.0000 0.9603 0.9845 0.9391 0.0000 46 
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30 0.0000 0.9601 0.9848 0.9391 0.0000 46 

31 0.0000 0.9598 0.9848 0.9391 0.0000 46 

32 0.0000 0.9598 0.9848 0.9391 0.0000 46 

33 0.0000 0.9623 0.9762 0.9267 0.0000 46 

34 0.0000 0.9646 0.9823 0.9329 0.0000 46 

35 0.0000 0.9637 0.9837 0.9360 0.0000 46 

36 0.0000 0.9625 0.9842 0.9360 0.0000 46 

37 0.0000 0.9617 0.9844 0.9391 0.0000 46 

38 0.0000 0.9611 0.9847 0.9391 0.0000 46 

39 0.0000 0.9607 0.9847 0.9391 0.0000 46 

40 0.0000 0.9603 0.9848 0.9391 0.0000 46 

41 0.5374 0.9864 0.9834 0.9202 0.8322 14 

42 0.3738 0.9842 0.9839 0.9329 0.7623 28 

43 0.2475 0.9798 0.9821 0.9360 0.6871 32 

44 0.1535 0.9757 0.9811 0.9360 0.6090 33 

45 0.0913 0.9724 0.9812 0.9360 0.5344 34 

46 0.0000 0.9698 0.9819 0.9360 0.0000 46 

47 0.0000 0.9676 0.9828 0.9360 0.0000 46 

48 0.0000 0.9657 0.9835 0.9360 0.0000 46 

49 0.4894 0.9998 0.9996 0.8071 0.7926 25 

50 0.5008 0.9997 0.9995 0.8554 0.8089 19 

51 0.5297 0.9995 0.9991 0.8823 0.8266 16 

52 0.5607 0.9989 0.9985 0.9002 0.8423 12 

53 0.5758 0.9977 0.9971 0.9137 0.8506 8 

54 0.5571 0.9956 0.9946 0.9235 0.8448 10 

55 0.4941 0.9921 0.9911 0.9298 0.8198 17 

56 0.3914 0.9876 0.9873 0.9329 0.7725 27 

*The double ring electrode-based argon cold plasma jet operating 
conditions corresponding to the highest composite desirability. 

 

 

5. 3. Combinatorial Effects of Supply Voltage and 
Supply Frequency on the Responses       To visually 

analyze the effects of SV and SF on the output 

parameters, Figure 7 presents the 3D surface plots of the 

experimental responses, PDC, JLwS, JLwoS and P with 

respect to variations in SV and SF. From Figure 7(a), it 

is observed that, PDC increases from 100 mA to 200 mA 

with increase in SV from 3.5 kV to 6 kV. However, the 

effect of SF appears to be more nonlinear with peaks 

observed near 15 kHz and 25 kHz. The effects on JLwS 

and JLwoS are more straightforward (Figure 7(b) and 

(c)). Both JLwS and JLwoS are found to increase with 

rise in SV and SF, both as individual and interaction 

effects, yielding a maximum of ≥ 25 mm at the highest 

values of SV and SF. Another observation is that, SV has 

a greater influence than SF on both JLwS and JLwoS. 

The power consumption (P) reaches a minimum of 
 

 
(a) 

 
(b) 

Figure 6. (a) Main effect plot and (b) contour plot of 

composite desirability with respect to SV and SF 
 
 

around 0.3 W at the minimum values of both SV and SF 

(Figure 7(d)). Comparing the effects of the two control 

parameters, it is found that, SF induces a greater change 

in P compared to SV. 
 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 7. 3D surface plots showing the contours of 

responses: (a) PDC, (b) JLwS, (c) JLwoS, (d) P, with respect 

to the variations in the control parameters: SV and SF 

 
 

6. CONCLUSIONS 
 
This work presents a modeling and optimization 

methodology for the performance of the double ring 

electrode-based argon cold plasma jet using ANN and 

DFA techniques. The feedforward backpropagation 

ANN model with ‘2-8-20-4’ topology using the 

Levenberg-Marquardt algorithm and tansig activation 

function accurately described the experimental responses 

of pulse discharge current, jet length with and without 

sleeve, and power consumption (R2 > 0.96) throughout 

the experimental range: 3.5 kV ≤ SV ≤ 6 kV and 10 kHz 

≤ SF ≤ 25 kHz. The optimization using DFA revealed that 

SV = 5 kV and SF = 25 kHz yielded the best multi-

response performance of PDC = 128 mA, JLwS = 25 mm, 

JLwoS = 22 mm and P = 0.97 W. The interaction effect 

analysis of composite desirability index showed that SV 

< 6 kV is advisable for a good performance (CDI > 0.6) 

for the entire range of 10 kHz ≤ SF ≤ 25 kHz. The 

analysis of combinatorial effects of SV and SF showed 

that JLwS and JLwoS become maximum at SV = 6 kV 

and SF = 25 kHz. PDC becomes minimum near SV = 3.5 

kV and 15 kHz ≤ SF ≤ 25 kHz, and P is minimized at SV 

= 3.5 kV and SF = 10 kHz. The findings of this study 

demonstrated that the proposed ANN model can be used 

to evaluate, obtain insights on, and predict the 

performance of the double ring electrode-based argon 

cold plasma jet. The results of this study would serve as 

a benchmark for development of such fundamental 

predictive models for various types of cold plasma 

technologies and their optimization. 
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8. APPENDIX 
 

The results of various trails conducted to obtain the best 

accuracy ANN structure (shown in bold) are shown in 

Table 4. For additional quantitative comparison, the error 

metrics mean square error (MSE) and mean absolute 

percentange error (MAPE) have been included:  

( )
21

MSE y y
n

= −  (8) 

100% y y
MAPE

n y

−
=   (9) 

where, 𝑛 is the number of data points, 𝑦 and �̅� are the 

actual and predicted output value, respectively.  

 

 
TABLE 4. Errors with different ANN structures 

Neurons in 

Layer 1 

Neurons in 

Layer 2 
R2 MSE 

MAPE 

(%) 

20 3 0.62 37.119 25.52 

18 6 0.76 30.234 19.35 

16 8 0.77 27.292 19.01 

14 12 0.82 25.632 15.67 

12 14 0.91 20.246 9.13 

10 16 0.90 20.842 10.02 

8 20 0.97 16.062 3.62 

6 20 0.89 21.423 10.34 

3 20 0.71 31.357 21.35 
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Persian Abstract 

 چکیده 
  ن ی اجرا شده است. ا  ی پزشک ستیز  یکاربردها  ی و هم برا  ی کیتکنولوژ  یکاربردها  یاست که هم برا  رگذاری و تاث  یقو  ار یبس  یفناور  ک ی(  CAPفشار اتمسفر سرد )  یپلاسما

فقط    ی پزشک  ست یز  نهیکاربرد آن در زم   یبرا  همتمرکز است ک  دیبر الکترود دو حلقه جد  یفشار اتمسفر سرد مبتن  یپلاسما  ی( براANN)  یمصنوع  یشبکه عصب  یمقاله بر اجرا

(  نی( و طول جت )بدون آستنیطول جت )با آست   ،یاوج، توان مصرف  یدب  ان یمؤثر مانند جر  ی خروج  یذاتاً به تجسم پارامترها  ANN.  کندی درخشش عمل م  هیدر منطقه تخل 

فراتر   CAP یخروج ی پارامترها ینیبشیبا پ ANNمدل  تی. قابلکندی کمک م نیماش یریادگ ی مدلبا استفاده از  هیولتاژ و فرکانس منبع تغذ یورود یمجموعه پارامترها یبرا

 ان یتا همزمان جر  شودی م  نییتع   یبیترک  تیتابع مطلوب  کردیبا استفاده از رو  هیو فرکانس منبع تغذ  هیولتاژ تغذ  نهیبه  مات یتنظ  ت،ی. در نهاشودینشان داده م  یاز محدوده تجرب

 ( را به حداکثر برساند و مصرف برق را به حداقل برساند. نی( و طول جت )بدون آستنی جت )با آست ولط ک،یپ هیتخل

 

 


