Electrolyte Temperature Dependency of Electrodeposited Nickel in Sulfate Solution on the Hardness and Corrosion Behaviors

Document Type : Original Article

Authors

1 Departement of Mechanical Engineering, Universitas Negeri Jakarta, Indonesia

2 Department of Geoscience, Universitas Indonesia, Indonesia

3 Research Center for Metallurgy - National Research and Innovation Agency, Indonesia

4 Department of Mechanical Engineering, Universitas Nasional, Indonesia

5 Research Center for Nuclear Fuel Cycle and Radioactive Waste Technology - National Research and Innovation Agency, Indonesia

6 Department of Physics Education, UIN Syarif Hidayatullah, Indonesia

Abstract

The hardness and corrosion resistance of nickel (Ni) deposit on a substrate could be reached by controlling electrolyte temperature during deposition. In this research, the electrodeposition of Ni at various temperatures of electrolytes was performed. Electrodeposited Ni films using an optical digital camera, X-ray diffraction (XRD), scanning electron microscope with energy-dispersive x-ray spectroscopy (SEM-EDS), microhardness test, and potentiostat were investigated. The bright deposit occurred at 25 °C; an increase in the temperature to 40 °C leads to a change of color into semi-bright. Shifting to a higher temperature would increase the deposition rate, cathodic current efficiency, grain size, and oxygen content. The X-ray reflections in the planes (111), (200), and (220) correspond to as the Ni phase with a face center cubic (FCC) crystal structure. Decreasing crystallite size and micro-strain promoted to reach high hardness. Increasing the corrosion current density implies decreasing polarization resistance. The sample at the lowest electrolyte temperature has a better hardness, and the sample formed at 25 °C sulfate solution had less corrosion rate.

Keywords

Main Subjects


  1. Toocharoen, S., Kaewkuekool, S., and Peasura, P. “Rejuvenation heat treatment of nickel base superalloy grade GTD111 after long-term service via taguchi method for optimization.” International Journal of Engineering, Transactions A: Basics, Vol. 34, No. 4, (2021), 956-965. https://doi.org/10.5829/ije.2021.34.04a.22
  2. Patil, V. G., Somasundaram, B., Kandaiah, S., Ramesh, M. R., and Kumar, S. “High Temperature Corrosion Behavior of High Velocity Oxy Fuel Sprayed NiCrMoFeCoAl-30%SiO2 and NiCrMoFeCoAl-30%Cr2O3 Composite Coatings on ASTM SA213-T22 Steel in a Coal-fired Boiler Environment.” International Journal of Engineering, Transactions A: Basics, Vol. 35, No. 7, (2022), 1416-1427. https://doi.org/10.5829/ije.2022.35.07a.19
  3. Susetyo, F. B., Faridh, A., and Soegijono, B. “Stirring Effect on Surface Morphology, Structure, and Electrochemical Behavior of Electrodeposited Nickel Film on Copper Substrates.” IOP Conference Series: Materials Science and Engineering, Vol. 694, No. 1, (2019), 1-5. https://doi.org/10.1088/1757-899X/694/1/012040
  4. Poursaiedi, E., and Salarvand, A. “Comparison of properties of Ti/TiN/TiCN/TiAlN Film deposited by cathodic arc physical vapor and plasma-assisted chemical vapor deposition on custom 450 steel substrates.” International Journal of Engineering, Transactions A: Basics, Vol. 29, No. 10, (2016), 1459-1468. https://doi.org/10.5829/idosi.ije.2016.29.10a.17
  5. Moosaei, H. R., Zareei, A. R., and Salemi, N. “Elevated Temperature Performance of Concrete Reinforced with Steel, Glass, and Polypropylene Fibers and Fire-proofed with Coating.” International Journal of Engineering, Transactions B: Applications, Vol. 35, No. 5, (2022), 917-930. https://doi.org/10.5829/ije.2022.35.05b.08
  6. Bazzaoui, M., Martins, J. I., Bazzaoui, E. A., and Albourine, A. “Environmentally friendly process for nickel electroplating of ABS.” Applied Surface Science, Vol. 258, No. 20, (2012), 7968-7975. https://doi.org/10.1016/j.apsusc.2012.04.146
  7. Wasekar, N. P., Haridoss, P., Seshadri, S. K., and Sundararajan, G. “Influence of mode of electrodeposition , current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings.” Surface & Coatings Technology, Vol. 291, (2016), 130-140. https://doi.org/10.1016/j.surfcoat.2016.02.024
  8. Gu, C. D., You, Y. H., Yu, Y. L., Qu, S. X., and Tu, J. P. “Microstructure, nanoindentation, and electrochemical properties of the nanocrystalline nickel film electrodeposited from choline chloride-ethylene glycol.” Surface and Coatings Technology, Vol. 205, No. 21-22, (2011), 4928-4933. https://doi.org/10.1016/j.surfcoat.2011.04.098
  9. Yamamoto, T., Igawa, K., Tang, H., Chen, C. Y., Chang, T. F. M., Nagoshi, T., Kudo, O., Maeda, R., and Sone, M. “Effects of current density on mechanical properties of electroplated nickel with high speed sulfamate bath.” Microelectronic Engineering, Vol. 213, (2019), 18-23. https://doi.org/10.1016/j.mee.2019.04.012
  10. Bigos, A., Wolowicz, M., Janusz-Skuza, M., Starowicz, Z., Szczerba, M. J., Bogucki, R., and Beltowska-Lehman, E. “Citrate-based baths for electrodeposition of nanocrystalline nickel coatings with enhanced hardness.” Journal of Alloys and Compounds, Vol. 850, (2021), 156857. https://doi.org/10.1016/j.jallcom.2020.156857
  11. Cheng, W., Ge, W., Yang, Q., and Qu, X. “Study on the corrosion properties of nanocrystalline nickel electrodepositied by reverse pulse current.” Applied Surface Science, Vol. 276, (2013), 604-608. https://doi.org/10.1016/j.apsusc.2013.03.139
  12. Chung, C. K., Chang, W. T., Chen, C. F., and Liao, M. W. “Effect of temperature on the evolution of diffusivity, microstructure and hardness of nanocrystalline nickel films electrodeposited at low temperatures.” Materials Letters, Vol. 65, No. 3, (2011), 416-419. https://doi.org/10.1016/j.matlet.2010.10.064
  13. Jinlong, L., Tongxiang, L., and Chen, W. “Effect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel.” Journal of Solid State Chemistry, Vol. 240, (2016), 109-114. https://doi.org/10.1016/j.jssc.2016.05.025
  14. Susetyo, F. B., Fajrah, M. C., and Soegijono, B. “Effect of Electrolyte Temperature on Properties of Nickel Film Coated onto Copper Alloy Fabricated by Electroplating.” e-Journal of Surface Science and Nanotechnology, Vol. 18, (2020), 223-230. https://doi.org/10.1380/ejssnt.2020.223
  15. Basori, Soegijono, B., and Susetyo, F. B. “Magnetic field exposure on electroplating process of ferromagnetic nickel ion on copper substrate.” Journal of Physics: Conference Series, Vol. 2377, No. 012002, (2022), 1-7. https://doi.org/10.1088/1742-6596/2377/1/012002
  16. Yang, Z., Liu, X., and Tian, Y. “Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electrodeposition process.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 560, (2019), 205-212. https://doi.org/10.1016/j.colsurfa.2018.10.024
  17. SEKAR, R. “Synergistic effect of additives on electrodeposition of copper from cyanide-free electrolytes and its structural and morphological characteristics.” Transactions of Nonferrous Metals Society of China (English Edition), Vol. 27, No. 7, (2017), 1665-1676. https://doi.org/10.1016/S1003-6326(17)60189-4
  18. Fukumoto, K., Oue, S., Kikuchi, Y., Akamatsu, S., Takasu, T., and Nakano, H. “Effect of organic additives on the electrodeposition behavior of Zn from an alkaline zincate solution and its microstructure.” Materials Transactions, Vol. 61, No. 3, (2020), 497-505. https://doi.org/10.2320/matertrans.MT-M2019316
  19. Sarac, U., and Baykul, M. C. “Morphological and microstructural properties of two-phase Ni-Cu films electrodeposited at different electrolyte temperatures.” Journal of Alloys and Compounds, Vol. 552, (2013), 195-201. https://doi.org/10.1016/j.jallcom.2012.10.071
  20. Kamel, M. M., Anwer, Z. M., Abdel-Salam, I. T., and Ibrahim, I. S. “Nickel electrodeposition from novel lactate bath.” Transactions of the IMF, Vol. 88, No. 4, (2010), 191-197. https://doi.org/10.1179/002029610X12696136822437
  21. Chung, C. K., Chang, W. T., and Hung, S. T. “Electroplating of nickel films at ultra low electrolytic temperature.” Microsystem Technologies, Vol. 16, No. 8-9, (2010), 1353-1359. https://doi.org/10.1007/s00542-009-0955-6
  22. Kang, J. X., Zhao, W. Z., and Zhang, G. F. “Influence of electrodeposition parameters on the deposition rate and microhardness of nanocrystalline Ni coatings.” Surface and Coatings Technology, Vol. 203, No. 13, (2009), 1815-1818. https://doi.org/10.1016/j.surfcoat.2009.01.003
  23. Donegan, K. P., Godsell, J. F., Otway, D. J., Morris, M. A., Roy, S., and Holmes, J. D. “Size-tuneable synthesis of nickel nanoparticles.” Journal of Nanoparticle Research, Vol. 14, No. 1, (2012), 1-10. https://doi.org/10.1007/s11051-011-0670-y
  24. Shin, S. M., Lee, D. W., and Wang, J. P. “Fabrication of nickel nanosized powder from LiNiO2 from spent lithium-ion battery.” Metals, Vol. 8, No. 1, (2018), 1-6. https://doi.org/10.3390/met8010079
  25. Zhang, J., Leung, P., Qiao, F., Xing, L., Yang, C., Su, H., and Xu, Q. “Balancing the electron conduction and mass transfer: Effect of nickel foam thickness on the performance of an alkaline direct ethanol fuel cell (ADEFC) with 3D porous anode.” International Journal of Hydrogen Energy, Vol. 45, No. 38, (2020), 19801-19812. https://doi.org/10.1016/j.ijhydene.2020.05.119
  26. Petrícek, V., Dušek, M., and Palatinus, L. “Crystallographic computing system JANA2006: General features.” Zeitschrift fur Kristallographie. https://doi.org/10.1515/zkri-2014-1737
  27. Yudanto, S. D., Chandra, S. A., Roberto, R., Utama, D. P., Herlina, V. O., and Lusiana. “Phase and electrical properties of Ca3Co4O9 ceramic prepared by a citrate sol-gel route.” Journal of Ceramic Processing Research, Vol. 67, No. 2, (2022), 248-256. https://doi.org/10.31857/s0044457x22020076
  28. Monshi, A., Foroughi, M. R., and Monshi, M. R. “Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD.” World Journal of Nano Science and Engineering, Vol. 02, No. 03, (2012), 154-160. https://doi.org/10.4236/wjnse.2012.23020
  29. Mote, V., Purushotham, Y., and Dole, B. “Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles.” Journal of Theoretical and Applied Physics, Vol. 6, No. 1, (2012), 2-9. https://doi.org/10.1186/2251-7235-6-6
  30. Yudanto, S. D., Dewi, Y. P., Sebayang, P., Chandra, S. A., Imaduddin, A., Kurniawan, B., and Manaf, A. “Influence of CNTs addition on structural and superconducting properties of mechanically alloyed MgB2.” Journal of Metals, Materials and Minerals, Vol. 30, No. 3, (2020), 9-14. https://doi.org/10.14456/jmmm.2020.32
  31. Wang, Y. M., Zhao, D. D., Zhao, Y. Q., Xu, C. L., and Li, H. L. “Effect of electrodeposition temperature on the electrochemical performance of a Ni(OH) 2 electrode.” RSC Advances, Vol. 2, No. 3, (2012), 1074-1082. https://doi.org/10.1039/c1ra00613d
  32. Wasekar, N. P., O’Mullane, A. P., and Sundararajan, G. “A new model for predicting the grain size of electrodeposited nanocrystalline nickel coatings containing sulphur, phosphorus or boron based on typical systems.” Journal of Electroanalytical Chemistry, Vol. 833, (2019), 198-204. https://doi.org/10.1016/j.jelechem.2018.11.057
  33. Lin, Y., Pan, J., Zhou, H. F., Gao, H. J., and Li, Y. “Mechanical properties and optimal grain size distribution profile of gradient grained nickel.” Acta Materialia, Vol. 153, (2018), 279-289. https://doi.org/10.1016/j.actamat.2018.04.065
  34. Abdallah, M., Zaafarany, I. A., Abd El Wanees, S., and Assi, R. “Breakdown of passivity of nickel electrode in sulfuric acid and its inhibition by pyridinone derivatives using the galvanostatic polarization technique.” International Journal of Corrosion and Scale Inhibition, Vol. 4, No. 4, (2015), 338-352. https://doi.org/10.17675/2305-6894-2015-4-4-4
  35. Zhou, J., and Kong, D. “Effects of Ni addition on corrosion behaviors of laser cladded FeSiBNi coating in 3.5% NaCl solution.” Journal of Alloys and Compounds, Vol. 795, (2019), 416-425. https://doi.org/10.1016/j.jallcom.2019.05.012
  36. Jabbar, A., Yasin, G., Khan, W. Q., Anwar, M. Y., Korai, R. M., Nizam, M. N., and Muhyodin, G. “Electrochemical deposition of nickel graphene composite coatings effect of deposition temperature on its surface morphology and corrosion resistance.” RSC Advances, Vol. 7, No. 49, (2017), 31100-31109. https://doi.org/10.1039/c6ra28755g
  37. Susetyo, F. B., Soegijono, B., Yusmaniar, and Fajrah, M. C. “Deposition of nickel films on polycrystalline copper alloy with various current densities from watts solution.” AIP Conference Proceedings, Vol. 2331, (2021). https://doi.org/10.1063/5.0041640
  38. Martínez, C., Briones, F., Aguilar, C., Araya, N., Iturriza, I., Machado, I., and Rojas, P. “Effect of hot pressing and hot isostatic pressing on the microstructure, hardness, and wear behavior of nickel.” Materials Letters, Vol. 273, (2020). https://doi.org/10.1016/j.matlet.2020.127944
  39. Elias, L., and Hegde, A. C. “Effect of magnetic field on corrosion protection efficacy of Ni-W alloy coatings.” Journal of Alloys and Compounds, Vol. 712, (2017), 618-626. https://doi.org/10.1016/j.jallcom.2017.04.132
  40. Tsuru, Y., Nomura, M., and Foulkes, F. R. “Effects of boric acid on hydrogen evolution and internal stress in films deposited from a nickel sulfamate bath.” Journal of Applied Electrochemistry, Vol. 32, No. 6, (2002), 629-634. https://doi.org/10.1023/A:1020130205866
  41. Liu, S., Ji, R., Liu, Y., Zhang, F., Jin, H., Li, X., Zheng, Q., Lu, S., and Cai, B. “Effects of boric acid and water on the deposition of Ni/TiO2 composite coatings from deep eutectic solvent.” Surface and Coatings Technology, Vol. 409, (2021), 126834. https://doi.org/10.1016/j.surfcoat.2021.126834
  42. Munasir, N., Triwikantoro, Zainuri, M., Bäßler, R., and Darminto. “Corrosion polarization behavior of Al-SiO2 composites in 1M and related microstructural analysis.” International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 7, (2019), 982-990. https://doi.org/10.5829/ije.2019.32.07a.11
  43. Krawczyk, B., Cook, P., Hobbs, J., and Engelberg, D. L. “Corrosion behavior of cold rolled type 316L stainless steel in HCl-containing environments.” Corrosion, Vol. 73, No. 11, (2017), 1346-1358.
  44. Xu, W., Lu, X., Zhang, B., Liu, C., Lv, S., Yang, S., and Qu, X. “Effects of porosity on mechanical properties and corrosion resistances of PM-fabricated porous Ti-10Mo Alloy.” Metals, Vol. 8, No. 3, (2018). https://doi.org/10.3390/met8030188