Experimental Analysis of Square Position on Variable Displacement Electrohydraulic Actuation System by Open Loop Control

Document Type : Original Article


Department of Mechanical Engineering, National Institute of Technology Patna, Patna, Biha, India


Electrohydraulic actuation systems offer definative position control and an energy-efficient solution. Such systems are widely used in mobile machinery, robotics, and various stationary systems. Achieving good control of actuator position of the variable displacement electrohydraulic actuation system by an open loop control is the objective of this study. For square position (reference position) control, amplitude is taken as 0.1 m, at 0.05, 0.15 and 0.25 Hertz of frequency. Square position control is accomplished with LabVIEW algorithm through the application of compact RIO controller having input and output module. Appropriate control of voltage supply is obtained, when response position and reference position show appropiate accuracy. A higher Pearson’s correlation coefficient near to 1 and lower the Mean absolute error, Mean deviation of error and standard deviation of error represent the best response position. It is observed that highest value of correlation coefficient achieved at 0.05 Hertz of frequency for response R3.  At a lower frequency, square position control is better with higher correlation coefficient and lowest values of errors.   


Main Subjects

  1. Merritt, H.E., "Hydraulic control systems, 1967", John Wiley & Sons, Inc., New York
  2. Sam, Y.M., Osman, J.H. and Ghani, M.R.A., "A class of proportional-integral sliding mode control with application to active suspension system", Systems & Control Letters, Vol. 51, No. 3-4, (2004), 217-223. doi. https://doi.org/10.1016/j.sysconle.2003.08.007
  3. Alleyne, A. and Hedrick, J.K., "Nonlinear adaptive control of active suspensions", IEEE Transactions on Control Systems Technology, Vol. 3, No. 1, (1995), 94-101. doi: 10.1109/87.370714.
  4. Alleyne, A.G. and Liu, R., "Systematic control of a class of nonlinear systems with application to electrohydraulic cylinder pressure control", IEEE Transactions on Control Systems Technology, Vol. 8, No. 4, (2000), 623-634. doi: 10.1109/87.852908.
  5. Liu, R. and Alleyne, A., "Nonlinear force/pressure tracking of an electro-hydraulic actuator", Journal of Dynamics Systems, Measurement, and Control, Trans. of ASME, Vol. 122, No. 1, (2000), 232-236. https://doi.org/10.1115/1.482466
  6. Guo, Q., Zhang, Y., Celler, B.G. and Su, S.W., "Backstepping control of electro-hydraulic system based on extended-state-observer with plant dynamics largely unknown", IEEE Transactions on Industrial Electronics, Vol. 63, No. 11, (2016), 6909-6920. doi: 10.1109/TIE.2016.2585080.
  7. Kaddissi, C., Kenne, J.-P. and Saad, M., "Indirect adaptive control of an electrohydraulic servo system based on nonlinear backstepping", IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 6, (2010), 1171-1177. doi: 10.1109/TMECH.2010.2092785.
  8. Yao, J., Jiao, Z. and Ma, D., "Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping", IEEE Transactions on Industrial Electronics, Vol. 61, No. 11, (2014), 6285-6293. doi: 10.1109/TIE.2014.2304912.
  9. Gholipour, R., Khosravi, A. and Mojallali, H., "Suppression of chaotic behavior in duffing-holmes system using back-stepping controller optimized by unified particle swarm optimization algorithm", (2013). doi: 10.5829/idosi.ije.2013.26.11b.05.
  10. Yao, B., Bu, F., Reedy, J. and Chiu, G.-C., "Adaptive robust motion control of single-rod hydraulic actuators: Theory and experiments", IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 1, (2000), 79-91. doi: 10.1109/3516.828592.
  11. Li, C., Chen, Z. and Yao, B., "Adaptive robust synchronization control of a dual-linear-motor-driven gantry with rotational dynamics and accurate online parameter estimation", IEEE Transactions on Industrial Informatics, Vol. 14, No. 7, (2017), 3013-3022. doi: 10.1109/TII.2017.2773472.
  12. Yao, J., Jiao, Z., Ma, D. and Yan, L., "High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties", IEEE/ASME Transactions on Mechatronics, Vol. 19, No. 2, (2013), 633-641. doi: 10.1109/TMECH.2013.2252360.
  13. Ala, R. and Mehdi, S., "Systematic approach to design a finite time convergent differentiator in second order sliding mode controller", International Journal of Engineering, Transactions B: Applications, Vol. 26, No. 11, (2013), 1357-1368. doi: 10.5829/idosi.ije.2013.26.11b.11.
  14. Somasundaram, D. and Babu, S., "A closed loop control of quadratic boost converter using pid controller", International Journal of Engineering, Transactions B: Applications, Vol. 27, No. 11, (2014), 1653-1662. doi: 10.5829/idosi.ije.2014.27.11b.02.
  15. Saadat, M. and Garmsiri, N., "A new intelligent approach to patient-cooperative control of rehabilitation robots", International Journal of Engineering, Transactions C: Aspects, Vol. 27, No. 3, (2014), 467-474. doi: 10.5829/idosi.ije.2014.27.03c.15.
  16. Na, J., Li, Y., Huang, Y., Gao, G. and Chen, Q., "Output feedback control of uncertain hydraulic servo systems", IEEE Transactions on industrial Electronics, Vol. 67, No. 1, (2019), 490-500. doi: 10.1109/TIE.2019.2897545.
  17. Huang, Y., Na, J., Wu, X. and Gao, G., "Approximation-free control for vehicle active suspensions with hydraulic actuator", IEEE Transactions on Industrial Electronics, Vol. 65, No. 9, (2018), 7258-7267. doi: 10.1109/TIE.2018.2798564.
  18. Wang, A., Kuang, L. and Zhang, X., "A study on flow coefficient of combined throttling groove in spool valves", Journal of Zhejiang University-Science A, Vol. 52, No. 2, (2018), 110-117.
  19. Abbas, R., Al-Baldawi, Y. and Abullah, F., "Theoretical and experimental study of hydraulic actuators synchronization by using flow divider valve", Journal of Engineering and Development, Vol. 18, No. 5, (2014), 283-293. doi.
  20. Mahato, A.C., Ghoshal, S.K. and Samantaray, A.K., "Reduction of wind turbine power fluctuation by using priority flow divider valve in a hydraulic power transmission", Mechanism and Machine Theory, Vol. 128, (2018), 234-253. https://doi.org/10.1016/j.mechmachtheory.2018.05.019
  21. Mulyukin, V., Karelin, D. and Belousov, A., "A mathematical model of the controlled axial flow divider for mobile machines", in IOP Conference Series: Materials Science and Engineering, IOP Publishing. Vol. 134, (2016), 012039.
  22. Kumar, G. and Mandal, N.P., "Experimental study of position tracking control and pressure variation analysis on electrohydraulic system in open loop", Materials Today: Proceedings, Vol. 56, (2022), 2184-2188. https://doi.org/10.1016/j.matpr.2021.11.497
  23. Sazonov, Y.A., Mokhov, M.A., Gryaznova, I.V., Voronova, V.V., Tumanyan, K.A., Frankov, M.A. and Balaka, N.N., "Development and prototyping of jet systems for advanced turbomachinery with mesh rotor", Emerging Science Journal, Vol. 5, No. 5, (2021), 775-801. doi: 10.28991/esj-2021-01311.
  24. Sazonov, Y.A., Mokhov, M.A., Gryaznova, I.V., Voronova, V.V., Tumanyan, K.A., Frankov, M.A. and Balaka, N.N., "Designing mesh turbomachinery with the development of euler’s ideas and investigating flow distribution characteristics", Civil Engineering Journal, Vol. 8, No. 11, (2022), 2598-2627. doi: 10.28991/CEJ-2022-08-11-017.
  25. Sazonov, Y.A., Mokhov, M.A., Gryaznova, I.V., Voronova, V.V., Tumanyan, K.A., Frankov, M.A. and Balaka, N.N., "Simulation of hybrid mesh turbomachinery using cfd and additive technologies", Civil Engineering Journal, Vol. 8, No. 12, (2022), 3815-3830. doi: 10.28991/CEJ-2022-08-12-011.
  26. Manring, N.D. and Fales, R.C., "Hydraulic control systems, John Wiley & Sons, (2019).
  27. Mir Mohammad Sadeghi, S., Hoseini, S., Fathi, A. and Mohammadi Daniali, H., "Experimental hysteresis identification and micro-position control of a shape-memory-alloy rod actuator", International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 1, (2019), 71-77. doi: 10.5829/ije.2019.32.01a.09.
  28. Fateh, M.M. and Sadeghijaleh, M., "Voltage control strategy for direct-drive robots driven by permanent magnet synchronous motors", International Journal of Engineering, Transactions B: Applications,, Vol. 28, No. 5, (2015), 709-716. doi: 10.5829/idosi.ije.2015.28.05b.09.
  29. Grabbel, J. and Ivantysynova, M., "An investigation of swash plate control concepts for displacement controlled actuators", International Journal of Fluid Power, Vol. 6, No. 2, (2005), 19-36. https://doi.org/10.1080/14399776.2005.10781217
  30. Bishara, A.J. and Hittner, J.B., "Reducing bias and error in the correlation coefficient due to nonnormality", Educational and Psychological Measurement, Vol. 75, No. 5, (2015), 785-804. https://doi.org/10.1177/0013164414557639
  31. Jothivenkatachalam, K., Nithya, A. and Mohan, S.C., "Correlation analysis of drinking water quality in and around perur block of coimbatore district, tamil nadu, india", Rasayan Journal of Chemistry, Vol. 3, No. 4, (2010), 649-654.