Application of Ultra-sensitive Pillar-enhanced Quartz Crystal Resonators for Airborne Detection of Nanoparticles: A Theoretical Study

Document Type : Original Article


1 Nanjing University, Gulou, Nanjing, Jiangsu, China

2 Lanzhou University, Lanzhou, Gansu, China


Although quartz crystal resonators (QCR) have been used for airborne detection of particles and viruses, they suffer from various limitations, such as low sensitivity compared to other devices. Therefore, it is necessary to develop a new device capable of achieving high sensitivity, which can be used for practical airborne detections. The current study reports a comprehensive parametric theoretical model for analyzing the response of ultra-sensitive pillar-enhanced QCR (QCR-P) for airborne detection of nanoparticles. The electromechanical model comprised an equivalent circuit integrated with pillars containing nanoparticles. It was shown that pillar height and particle radius play a critical role in the response of QCR-P devices. The study revealed that selecting the optimal pillar height can lead to a significant frequency shift depending on the nanoparticle radius and pillar height, while it is independent of particle mass density. These results underscore the potential of utilizing pillars to substantially enhance the sensitivity of conventional QCR up to 140 times in the airborne detection of nanoparticles. These findings can be utilized to design optimum pillar heights to achieve maximum sensitivity in the airborne detection of nanoparticles and proteins, thereby enabling the adoption of ultra-sensitive pillar-enhanced quartz crystal resonators for practical airborne applications.


Main Subjects

  1. Kadam, V., Deshmukh, A. and Bhosale, S., "Hybrid beamforming for dual functioning multi-input multi-output radar using dimension reduced-baseband piecewise successive approximation", International Journal of Engineering, Transactions A: Basics, Vol. 36, No. 1, (2023), 182-190. doi: 10.5829/IJE.2023.36.01A.20.
  2. Nistratov, A.V., Klimenko, N.N., Pustynnikov, I.V. and Vu, L.K., "Thermal regeneration and reuse of carbon and glass fibers from waste composites", Emerging Science Journal, Vol. 6, (2022), 967-984. doi: 10.28991/ESJ-2022-06-05-04.
  3. Farsaeivahid, N., Grenier, C., Nazarian, S. and Wang, M.L., "A rapid label-free disposable electrochemical salivary point-of-care sensor for sars-cov-2 detection and quantification", Sensors, Vol. 23, No. 1, (2022), 433. doi: 10.3390/s23010433.
  4. Vahid, N.F., Marvi, M.R., Naimi-Jamal, M.R., Naghib, S.M. and Ghaffarinejad, A., "X-fe2o4-buckypaper-chitosan nanocomposites for nonenzymatic electrochemical glucose biosensing", Anal. Bioanal. Electrochem, Vol. 11, No., (2019), 930-942.
  5. Farsaei Vahid, N., Marvi, M.R., Naimiā€Jamal, M.R., Naghib, S.M. and Ghaffarinejad, A., "Effect of surfactant type on buckypaper electrochemical performance", Micro & Nano Letters, Vol. 13, No. 7, (2018), 927-930. doi: 10.1049/mnl.2017.0691.
  6. Ji, S., Chiniforooshan Esfahani, I., Sun, H. and Wan, K.-t., "Particle deposition on a filtration bed using a quartz crystal microbalance embedded in a microfluidic channel", SSRN Electronic Journal, doi: 10.2139/ssrn.4265353.
  7. Ji, S., Ran, R., Chiniforooshan Esfahani, I., Wan, K.-t. and Sun, H., "A new microfluidic device integrated with quartz crystal microbalance to measure colloidal particle adhesion", in ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers. Vol. 85598, (2021), V005T005A075.
  8. Hashim, A.M. and Kadhum, M.M., "Compressive strength and elastic modulus of slurry infiltrated fiber concrete (SIFCON) at high temperature", Civil Engineering Journal, Vol. 6, No. 2, (2020), 265-275. doi: 10.28991/cej-2020-03091469.
  9. Marchione, F., "Investigation of vibration modes of double-lap adhesive joints: Effect of slot", International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 10, (2020), 1917-1923. doi: 10.5829/ije.2020.33.10a.10. 
  10. Karevan, M., Motalleb, M., Jannesari, A. and Zeinali, M., "High energy release-high retraction smart polymer fibers used in artificial muscle fabrication", International Journal of Engineering, Engineering, Transactions A: Basics, Vol. 36, No. 4, (2023), 788-796. doi: 10.5829/IJE.2023.34.04A.15
  11. Pato, U., Ayu, D.F., Riftyan, E., Restuhadi, F., Pawenang, W.T., Firdaus, R., Rahma, A. and Jaswir, I., "Cellulose microfiber encapsulated probiotic: Viability, acid and bile tolerance during storage at different temperature", Emerging Science Journal, Vol. 6, (2022), 106-117. doi: 10.28991/ESJ-2022-06-01-08.
  12. Budianto, A., Wardoyo, A.Y.P., Masruroh, H.A.D. and Dharmawan, H., "An airborne fungal spore mass measurement system based on graphene oxide coated qcm", Polish Journal of Environmental Studies, Vol. 31, No. 4, (2022), 1-7. doi: 10.15244/pjoes/147057.
  13. Lee, J., Jang, J., Akin, D., Savran, C.A. and Bashir, R., "Real-time detection of airborne viruses on a mass-sensitive device", Applied Physics Letters, Vol. 93, No. 1, (2008), 013901. doi: 10.1063/1.2956679.
  14. Morris, D.R., Fatisson, J., Olsson, A.L., Tufenkji, N. and Ferro, A.R., "Real-time monitoring of airborne cat allergen using a qcm-based immunosensor", Sensors and Actuators B: Chemical, Vol. 190,  (2014), 851-857. doi: 10.1016/j.snb.2013.09.061.
  15. Wang, P., Su, J., Dai, W., Cernigliaro, G. and Sun, H., "Ultrasensitive quartz crystal microbalance enabled by micropillar structure", Applied Physics Letters, Vol. 104, No. 4, (2014), 043504. doi: 10.1063/1.4862258.
  16. Zaza, G., Hammou, A., Benchatti, A. and Saiah, H., "Fault detection method on a compressor rotor using the phase variation of the vibration signal", International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 8, (2017), 1176-1181. doi: 10.5829/ije.2017.30.08b.09.
  17. Wang, P., Su, J., Su, C.-F., Dai, W., Cernigliaro, G. and Sun, H., "An ultrasensitive quartz crystal microbalance-micropillars based sensor for humidity detection", Journal of Applied Physics, Vol. 115, No. 22, (2014), 224501. doi: 10.1063/1.4880316.
  18. Su, J., Esmaeilzadeh, H., Zhang, F., Yu, Q., Cernigliaro, G., Xu, J. and Sun, H., "An ultrasensitive micropillar-based quartz crystal microbalance device for real-time measurement of protein immobilization and protein-protein interaction", Biosensors and Bioelectronics, Vol. 99, (2018), 325-331. doi: 10.1016/j.bios.2017.07.074.
  19. Kashan, M., Kalavally, V., Lee, H. and Ramakrishnan, N., "Resonant characteristics and sensitivity dependency on the contact surface in qcm-micropillar-based system of coupled resonator sensors", Journal of Physics D: Applied Physics, Vol. 49, No. 19, (2016), 195303. doi: 10.1088/0022-3727/49/19/195303.
  20. Kashan, M.A.M., Kalavally, V. and Ramakrishnan, N., "Sensing film-coated qcm coupled resonator sensors: Approach, fabrication, and demonstration", Sensors and Actuators A: Physical, Vol. 274, (2018), 64-72. doi: 10.1016/j.sna.2018.03.006.
  21. Mulyawati, I.B., Riza, M., Dermawan, H. and Pratiwi, V., "Numerical simulation of embankment settlement in vacuum preloading systems", International Journal of Engineering, Transactions A: Basics, Vol. 36, No. 4, (2023), 817-823. doi: 10.5829/IJE.2023.36.04A.18
  22. Thepade, S., Dindorkar, M., Chaudhari, P. and Bang, S., "Enhanced face presentation attack prevention employing feature fusion of pre-trained deep convolutional neural network model and thepade's sorted block truncation coding", International Journal of Engineering, Transactions A: Basics, Vol. 36, No. 4, (2023), 807-816. doi: 10.5829/IJE.2023.36.04A.17
  23. Marchione, F., "Shear stress distribution in double-lap adhesive joints reinforced with nylon fabric: Numerical investigation", International Journal of Engineering, Transactions A: Basics, Vol. 36, No. 1, (2023), 35-40. doi: 10.5829/IJE.2023.36.01A.05
  24. Abdollahi, S.A., Alizadeh, A.a., Chiniforooshan Esfahani, i., Zarinfar, M. and Pasha, P., "Investigating heat transfer and fluid flow betwixt parallel surfaces under the influence of hybrid nanofluid suction and injection with numerical analytical technique", Alexandria Engineering Journal, Vol. 70, (2023), 423-439. doi: 10.1016/j.aej.2023.02.040.
  25. Kashan, M.A.M., Kalavally, V., Mazumdar, P., Lee, H.W. and Ramakrishnan, N., "Qcm coupled resonating systems under vacuum: Sensitivity and characteristics", IEEE Sensors Journal, Vol. 17, No. 16, (2017), 5044-5049. doi: 10.1109/JSEN.2017.2719104.
  26. Wang, P., Su, J., Shen, M., Ruths, M. and Sun, H., "Detection of liquid penetration of a micropillar surface using the quartz crystal microbalance", Langmuir, Vol. 33, No. 2, (2017), 638-644. doi: 10.1021/acs.langmuir.6b03640.
  27. Esfahani, I.C. and Sun, H., "A droplet-based micropillar-enhanced acoustic wave (μpaw) device for viscosity measurement", Sensors and Actuators A: Physical, Vol. 350, (2023), 114121. doi: 10.1016/j.sna.2022.114121.
  28. Xie, X., Xie, J., Luo, W. and Wu, Z., "Electromechanical coupling and frequency characteristics of a quartz crystal resonator covered with micropillars", Journal of Vibration and Acoustics, Vol. 141, No. 4, (2019). doi: 10.1115/1.4042936.
  29. Kanazawa, K.K. and Gordon, J.G., "Frequency of a quartz microbalance in contact with liquid", Analytical Chemistry, Vol. 57, No. 8, (1985), 1770-1771. doi: 10.1021/ac00285a062.
  30. Mason, W., "Viscosity and shear elasticity measurements of liquids by means of shear vibrating crystals", Journal of Colloid Science, Vol. 3, No. 2, (1948), 147-162. doi: 10.1016/0095-8522(48)90065-8.