Investigating the Effect of Ultrasound Intensity on the Magnetic Properties of Magnetite Nanostructures Synthesized by Sonochemical Method

Document Type : Original Article


1 Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran

2 Materials and Energy Research Center (MERC), Karaj, Iran

3 Department of material science and engineering, Sharif University of Technology, Tehran, Iran


In this article, the synthesis of magnetite nanostructures was successfully carried out by the sonochemical process. In this method, stoichiometric amount of iron chlorides (FeCl3.6H2O and FeCl2.4H2O), ammonia (NH3) and polyvinylpyrolidone (PVP) were used to synthesize pure Fe3O4 nanoparticles. The effect of initial sonication power of the ultrasonic device on the size and morphology of the final products as one of the effective parameters was investigated. For this, the initial power of the sonicator was evaluated at 90, 70, 50 and 30 W at 40°C. Characterization of Fe3O4 nanoparticles was done by transmission electron microscope (TEM) and X-ray powder diffraction (XRD) and its magnetic properties were investigated by vibrating sample magnetometer (VSM). Investigation of the XRD pattern after annealing showed that pure Fe3O4 phase was successfully formed during the sonochemical process. TEM images determined the size of Fe3O4 nanoparticles to be 10-50 nm. The results showed that increasing the initial power of the system reduced the particle size and improved the magnetic properties of nanoparticles.


Main Subjects

  1. Kim, E.H., Ahn, Y. and Lee, H.S., "Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan", Journal of Alloys and Compounds, Vol. 434, (2007), 633-636, DOI:10.1016/j.jallcom.2006.08.311.
  2. Tjong, S. and Chen, H., "Nanocrystalline materials and coatings", Materials Science and Engineering: R: Reports, Vol. 45, No. 1-2, (2004), 1-88, DOI:10.1016/j.mser.2004.07.001.
  3. Kuchibhatla, S.V., Karakoti, A., Bera, D. and Seal, S., "One dimensional nanostructured materials", Progress in Materials Science, Vol. 52, No. 5, (2007), 699-913, DOI:10.1016/j.pmatsci.2006.08.001.
  4. Wang, X., Liao, Y., Zhang, D., Wen, T. and Zhong, Z., "A review of Fe3O4 thin films: Synthesis, modification and applications", Journal of Materials Science & Technology, Vol. 34, No. 8, (2018), 1259-1272, DOI:10.1016/j.jmst.2018.01.011.
  5. Ali, A., Hira Zafar, M.Z., ul Haq, I., Phull, A.R., Ali, J.S. and Hussain, A., "Synthesis, characterization, applications, and challenges of iron oxide nanoparticles", Nanotechnology, Science and Applications, Vol. 9, (2016), 49, DOI: 10.2147/NSA.S99986.
  6. Suslick, K.S., Hyeon, T. and Fang, M., "Nanostructured materials generated by high-intensity ultrasound: Sonochemical synthesis and catalytic studies", Chemistry of Materials, Vol. 8, No. 8, (1996), 2172-2179, DOI:10.1021/cm960056l.
  7. Salouti, M. and Ahangari, A., "Nanoparticle based drug delivery systems for treatment of infectious diseases, InTech London, UK, Vol. 552,  (2014).
  8. Dulińska-Litewka, J., Łazarczyk, A., Hałubiec, P., Szafrański, O., Karnas, K. and Karewicz, A., "Superparamagnetic iron oxide nanoparticles-current and prospective medical applications", Materials, Vol. 12, No. 4, (2019), 617, DOI: 10.3390/ma12040617.
  9. Kusch, P. and Foley, H., "The magnetic moment of the electron", Physical Review, Vol. 74, No. 3, (1948), 250, DOI:10.1103/PhysRev.74.250.
  10. Bahadur, D., Giri, J., Nayak, B.B., Sriharsha, T., Pradhan, P., Prasad, N., Barick, K. and Ambashta, R., "Processing, properties and some novel applications of magnetic nanoparticles", Pramana, Vol. 65, No. 4, (2005), 663-679,
  11. Raming, T., Winnubst, A.J., van Kats, C.M. and Philipse, A., "The synthesis and magnetic properties of nanosized hematite (α-Fe2O3) particles", Journal of Colloid and Interface Science, Vol. 249, No. 2, (2002), 346-350, DOI:10.1006/jcis.2001.8194.
  12. Azizi, A., Yourdkhani, A., Koohestani, H., Sadrnezhaad, S. and Asmatulu, R., "Fe50Co50 nanoparticles via self-propagating high-temperature synthesis during milling", Powder Technology, Vol. 208, No. 3, (2011), 623-627, DOI:10.1016/j.powtec.2010.12.030.
  13. F Hasany, S., H Abdurahman, N., R Sunarti, A. and Jose, R., "Magnetic iron oxide nanoparticles: Chemical synthesis and applications review", Current Nanoscience, Vol. 9, No. 5, (2013), 561-575, DOI:10.1680/bbn.12.00014.
  14. Ayuk, E., Ugwu, M. and Aronimo, S.B., "A review on synthetic methods of nanostructured materials", Chemistry Research Journal, Vol. 2, No. 5, (2017), 97-123.
  15. Wani, I.A., Nanomaterials, novel preparation routes, and characterizations, in Nanotechnology applications for improvements in energy efficiency and environmental management. 2015, IGI Global, 1-40. DOI: 10.4018/978-1-4666-6304-6
  16. Ekwealor, A. and Ezema, F., "Effects of precursor concentration on the optical and structural properties of Fe2O3 thin films synthesized in a polymer matrix by chemical bath deposition", Journal of Ovonic Research, Vol. 9, No., (2013), 35-43.
  17. Ghanbari, D., Salavati-Niasari, M. and Ghasemi-Kooch, M., "A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable pva-based magnetic nanocomposite", Journal of Industrial and Engineering Chemistry, Vol. 20, No. 6, (2014), 3970-3974, DOI:10.1016/j.jiec.2013.12.098.
  18. Hassanjani-Roshan, A., Vaezi, M.R., Shokuhfar, A. and Rajabali, Z., "Synthesis of iron oxide nanoparticles via sonochemical method and their characterization", Particuology, Vol. 9, No. 1, (2011), 95-99, DOI:10.1016/j.partic.2010.05.013.
  19. Gedanken, A., "Using sonochemistry for the fabrication of nanomaterials", Ultrasonics Sonochemistry, Vol. 11, No. 2, (2004), 47-55, DOI:10.1016/j.ultsonch.2004.01.037.
  20. Shin, N., Saravanakumar, K. and Wang, M.-H., "Sonochemical mediated synthesis of iron oxide (Fe3O4 and Fe2O3) nanoparticles and their characterization, cytotoxicity and antibacterial properties", Journal of Cluster Science, Vol. 30, No. 3, (2019), 669-675, DOI: 10.1007/s10876-019-01526-7.
  21. Pinkas, J., Reichlova, V., Zboril, R., Moravec, Z., Bezdicka, P. and Matejkova, J., "Sonochemical synthesis of amorphous nanoscopic iron (iii) oxide from Fe(acac)3", Ultrasonics Sonochemistry, Vol. 15, No. 3, (2008), 257-264, DOI:10.1016/j.ultsonch.2007.03.009.
  22. Fuentes-García, J., Santoyo-Salzar, J., Rangel-Cortes, E., Goya, G.F., Cardozo-Mata, V. and Pescador-Rojas, J.A., "Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticles", Ultrasonics Sonochemistry, Vol. 70, (2021), 105274, DOI:10.1016/j.ultsonch.2020.105274.
  23. Eskandari, M.J. and Hasanzadeh, I., "Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation", Materials Science and Engineering: B, Vol. 266, (2021), 115050, DOI:10.1016/j.mseb.2021.115050.
  24. Fotukian, S.M., Barati, A., Soleymani, M. and Alizadeh, A.M., "Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application", Journal of Alloys and Compounds, Vol. 816, (2020), 152548, DOI:10.1016/j.jallcom.2019.152548.
  25. Fouad, D.E., Zhang, C., Mekuria, T.D., Bi, C., Zaidi, A.A. and Shah, A.H., "Effects of sono-assisted modified precipitation on the crystallinity, size, morphology, and catalytic applications of hematite (α-Fe2O3) nanoparticles: A comparative study", Ultrasonics Sonochemistry, Vol. 59, (2019), 104713, DOI:10.1016/j.ultsonch.2019.104713.
  26. Wang, X.K., Chen, G.H. and Guo, W.L., "Sonochemical degradation kinetics of methyl violet in aqueous solutions", Molecules, Vol. 8, No. 1, (2003), 40-44, DOI:10.3390/80100040.
  27. Avvaru, B. and Pandit, A.B., "Experimental investigation of cavitational bubble dynamics under multi-frequency system", Ultrasonics Sonochemistry, Vol. 15, No. 4, (2008), 578-589, DOI:10.1016/j.ultsonch.2007.06.012.
  28. Gielen, B., Marchal, S., Jordens, J., Thomassen, L., Braeken, L. and Van Gerven, T., "Influence of dissolved gases on sonochemistry and sonoluminescence in a flow reactor", Ultrasonics Sonochemistry, Vol. 31, (2016), 463-472, DOI:10.1016/j.ultsonch.2016.02.001.
  29. Yadav, R.S., Kuřitka, I., Vilcakova, J., Jamatia, T., Machovsky, M., Skoda, D., Urbánek, P., Masař, M., Urbánek, M. and Kalina, L., "Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles", Ultrasonics Sonochemistry, Vol. 61, (2020), 104839, DOI:10.1016/j.ultsonch.2019.104839.
  30. Koizumi, H., Uddin, M.A. and Kato, Y., "Effect of ultrasonic irradiation on γ-Fe2O3 formation by co-precipitation method with Fe3+ salt and alkaline solution", Inorganic Chemistry Communications, Vol. 124, (2021), 108400, DOI:10.1016/j.inoche.2020.108400.
  31. Fuentes-García, J.S.A., Carvalho Alavarse, A., Moreno Maldonado, A.C., Toro-Córdova, A., Ibarra, M.R. and Goya, G.F.n., "Simple sonochemical method to optimize the heating efficiency of magnetic nanoparticles for magnetic fluid hyperthermia", ACS Omega, Vol. 5, No. 41, (2020), 26357-26364, DOI:10.1021/acsomega.0c02212.