Spectrophotometric Determination of Naproxen Using Chitosan Capped Silver Nanoparticles in Pharmaceutical Formulation

Document Type : Original Article


1 Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2 Faculty of Chemical Engineering Shariati Avenue, Babol Noshirvani University of Technology

3 Department of Pharmacology and Physiology, School of Medicine, Babol University of Medical Sciences


In this work, determination of naproxen concentration by chitosan capped silver nanoparticles were investigated. A new, simple and inexpensive spectrophotometric method for the first time was developed. The characteristics of chitosan capped silver nanoparticles were determined by ultraviolet spectroscopy (UV), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential (ZP) under optimal conditions. It worth to be mentioned that, synthesized chitosan (CS) -Ag nanoparticles were approximately 100 nm and PDI 0.385 with strong anionic (-24.8mV) zeta potential in acidic condition. It was found that chitosan as a chiral selector was able to detect naproxen at optimal experimental conditions. Validation of this method, including limit of detection and limit of quantification were accurately confirmed according to ICH instructions. Based on this method, the limit of detection (LOD) and the limit of quantification (LOQ) of naproxen were calculated 0.022 and 0.066 mol. L-1, respectively. Analysis of statistical data, the reproducibility and accuracy of this method demonstrated that the use of this novel method is valuable and practical for determination of naproxen in pharmaceutical formulations


1.     Gilani, S.L., Najafpour, G.D., Heydarzadeh, H.D. and Moghadamnia, A., "Enantioselective synthesis of (s)‐naproxen using immobilized lipase on chitosan beads", Chirality,  Vol. 29, No. 6, (2017), 304-314. DOI: 10.1002/chir.22689
2.     Damiani, P., Bearzotti, M. and Cabezón, M.A., "Spectrofluorometric determination of naproxen in tablets", Journal of Pharmaceutical and Biomedical Analysis,  Vol. 29, No. 1-2, (2002), 229-238. DOI:10.1016/S0731-7085(02)00063-8
3.     Duggan, K.C., Walters, M.J., Musee, J., Harp, J.M., Kiefer, J.R., Oates, J.A. and Marnett, L.J., "Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen", Journal of Biological Chemistry,  Vol. 285, No. 45, (2010), 34950-34959. DOI: 10.1074/jbc.M110.162982
4.     Gumułka, P., Dąbrowska, M. and Starek, M., "Microanalysis of selected nsaids using the spectrophotometric method", Engineering,  Vol. 1, No. 2, (2020), 211-221. DOI: 10.3390/eng1020014
5.     Qian, L., Thiruppathi, A.R., Elmahdy, R., van der Zalm, J. and Chen, A., "Graphene-oxide-based electrochemical sensors for the sensitive detection of pharmaceutical drug naproxen", Sensors,  Vol. 20, No. 5, (2020), 1252. DOI: 10.3390/s20051252
6.     Ahmadi, M., Madrakian, T. and Afkhami, A., "Enantioselective solid phase extraction prior to spectrofluorometric determination: A procedure for the determination of naproxen enantiomers in the presence of each other", RSC Advances,  Vol. 5, No. 7, (2015), 5450-5457. DOI: 10.1039/C4RA10405F
7.     Guo, H.-S., Kim, J.-M., Chang, S.-M. and Kim, W.-S., "Chiral recognition of mandelic acid by l-phenylalanine-modified sensor using quartz crystal microbalance", Biosensors and Bioelectronics,  Vol. 24, No. 9, (2009), 2931-2934. DOI: 10.1016/j.bios.2009.02.002
8.     Mikami, E., Goto, T., Ohno, T., Matsumoto, H. and Nishida, M., "Simultaneous analysis of naproxen, nabumetone and its major metabolite 6-methoxy-2-naphthylacetic acid in pharmaceuticals and human urine by high-performance liquid chromatography", Journal of Pharmaceutical and Biomedical Analysis,  Vol. 23, No. 5, (2000),917-925. DOI: 10.1016/S0731-7085(00)00365-4
9.     Jafari, M., Tashkhourian, J. and Absalan, G., "Chiral recognition of tryptophan enantiomers using chitosan-capped silver nanoparticles: Scanometry and spectrophotometry approaches", Talanta,  Vol. 178, (2018), 870-878. DOI: 10.1016/j.talanta.2017.10.005
10.   Maheshwari, R., Lakkadwala, S., Vyas, R. and Ghode, P., "Spectrophotometric determination of naproxen tablets using niacinamide as hydrotropic solubilizing additive", Journal of Current Pharmaceutical Research,  Vol. 4, (2010), 11-14.
11.   Mahmood, H.S. and Al-Sarraj, T.Z., "Two novel spectrophotometric methods for determination of naproxen via a modulation to hydroxy analog", Current Applied Science and Technology,  (2020), 295-309. DOI 10.14456/cast.2020.17
12.   Sastry, C. and Rao, A.R.M., "Application of folin-ciocalteu reagent for the spectrophotometric determination of some nonsteroidal antiinflammatory agents", Journal of Pharmacological Methods,  Vol. 19, No. 2, (1988), 117-125. DOI: 10.1016/0160-5402(88)90032-0
13.   Sastry, M., Patil, V. and Sainkar, S., "Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films", The Journal of Physical Chemistry B,  Vol. 102, No. 8, (1998), 1404-1410. DOI: 10.1021/jp9719873
14.   Panderi, I. and Parissi-Poulou, M., "Second-derivative spectrophotometric determination of naproxen in the presence of its metabolite in human plasma", Analyst,  Vol. 119,No. 4, (1994), 697-701. DOI: 10.1039/AN9941900697
15.   Khan, I.U., Aman, T., Ashraf, A. and Kazi, A.A., "Spectrophotometric determination of naproxen in pure and pharmaceuticalpreparations", Analytical letters, Vol. 32, No. 10., (1999) 2035-2050. DOI: 10.1080/00032719908542950
16.   Duymus, H., Arslan, M., Kucukislamoglu, M. and Zengin, M., "Charge transfer complex studies between some non-steroidal anti-inflammatory drugs and π-electron acceptors", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,  Vol. 65, No. 5, (2006), 1120-1124. DOI: 10.1016/j.saa.2006.01.044
17.   Alizadeh, N. and Keyhanian, F., "Simple, sensitive and selective spectrophotometric assay of naproxen in pure, pharmaceutical preparation and human serum samples", Acta Poloniae Pharmaceutica-Drug Research,  Vol. 72, No. 5, (2015), 867-875.
18.   Tashkhourian, J. and Afsharinejad, M., "Chiral recognition of naproxen enantiomers using starch capped silver nanoparticles", Analytical Methods,  Vol. 8, No. 10, (2016), 2251-2258. DOI: 10.1039/C5AY03021H
19.   Chen, Q., Jiang, H., Ye, H., Li, J. and Huang, J., "Preparation, antibacterial, and antioxidant activities of silver/chitosan composites", Journal of Carbohydrate Chemistry,  Vol. 33, No. 6, (2014), 298-312 DOI: 10.1080/07328303.2014.931962.
20.   Amendola, V., Bakr, O.M. and Stellacci, F., "A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly", Plasmonics,  Vol. 5, No. 1, (2010), 85-97. DOI: 10.1007/s11468-009-9120-4
21.   Sastry, C.S. and Rao, A.R., "Spectrophotometric determination of some analgesic and anti-inflammatory agents with 3-methyl-2-benzothiazolinone hydrazone hydrochloride", Microchimica Acta,  Vol. 97, No. 3-4, (1989), 237-244. DOI:10.1007/BF01242470
22.   Gharibshahian, E., "The effect of polyvinyl alcohol concentration on the growth kinetics of ktiopo4 nanoparticles synthesized by the co-precipitation method", HighTech and Innovation Journal,  Vol. 1, No. 4, (2020), 187-193. DOI: 10.28991/HIJ-2020-01-04-06
23.   Demartini, A., Alloisio, M., Cuniberti, C., Dellepiane, G., Jadhav, S.A., Thea, S., Giorgetti, E., Gellini, C. and Muniz-Miranda, M., "Polydiacetylene-functionalized noble metal nanocages", The Journal of Physical Chemistry C,  Vol. 113, No. 45, (2009), 19475-19481. DOI: 10.1021/jp905787h
24.   Bhattacharjee, S., "Dls and zeta potential–what they are and what they are not?", Journal of Controlled Release,  Vol. 235, (2016), 337-351. DOI: 10.1016/j.jconrel.2016.06.017
25.   Fillet, M., Fotsing, L., Bonnard, J. and Crommen, J., "Stereoselective determination of s-naproxen in tablets by capillary electrophoresis", Journal of Pharmaceutical and Biomedical Analysis,  Vol. 18, No. 4-5, (1998), 799-805. DOI: 10.1016/S0731-7085(98)00218-0
26.   Gilani, S.L., Najafpour, G.D., Moghadamnia, A. and Kamaruddin, A.H., "Stability of immobilized porcine pancreas lipase on mesoporous chitosan beads: A comparative study", Journal of Molecular Catalysis B: Enzymatic,  Vol. 133, No., (2016), 144-153. DOI: 10.1016/j.molcatb.2016.08.005
27.   Heydarzadeh Darzi, H., Gilani, S., Farrokhi, M., Nouri, S. and Karimi, G., "Textural and structural characterizations of mesoporous chitosan beads for immobilization of alpha-amylase: Diffusivity and sustainability of biocatalyst", International Journal of Engineering, Transactions B: Applications,  Vol. 32, No. 2, (2019), 207-216. DOI: 10.5829/ije.2019.32.02b.04
28.   Shrivastava, A. and Gupta, V.B., "Methods for the determination of limit of detection and limit of quantitation of the analytical methods", Chronicles of Young Scientists,  Vol. 2, No. 1, (2011), 21. DOI: 10.4103/2229-5186.7934
29.   Thompson, M., Ellison, S.L. and Wood, R., "Harmonized guidelines for single-laboratory validation of methods of analysis (iupac technical report)", Pure and Applied Chemistry, Vol. 74, No. 5, (2002), 835-855. DOI: 10.1351/pac200274050835
30.   Zhang, K., Yuan, Z., Li, L., Shi, X., Cao, L., Du, Y. and Xue, N., "Separation of the two enantiomers of naproxcinod by chiral normal-phase liquid chromatography", Journal of Chromatographic Science,  Vol. 49, No. 4, (2011), 272-275. DOI: 10.1093/chrsci/49.4.272
31.   Absalan, G., Alipour, Y., Rezaei, Z. and Akhond, M., "Determination of enantiomer compositions of propranolol enantiomers by chiral ionic liquid as a chiral selector and the uv-assisted spectrophotometric method", Analytical Methods,Vol. 4, No. 8, (2012), 2283-2287. DOI: 10.1039/C2AY25161B