Synthesis of Mesoporous Silica Xerogel from Geothermal Sludge using Sulfuric Acid as Gelation Agent

Document Type : Original Article

Authors

1 Department of Physics, Faculty of Mathematics and Natural Science, Sebelas Maret University, Surakarta, Indonesia

2 Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia

3 aDepartment of Physics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia

4 Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Surakarta, Indonesia

5 Department of Chemical Engineering, Institut Teknologi Kalimantan, Balikpapan, Indonesia

Abstract

A large amount of sludge is produced by the geothermal brine at the Dieng Geothermal power plant, exceeding 165 tons per month. This sludge is generally not utilized, except for use in landfills. The precipitate (sludge) is primarily composed of silica. The aim of this research is to synthesis mesoporous silica (SiO2) xerogel from geothermal sludge (GS) and to investigate the effects of pH as an effort to elevate the economic value of sludge through alkaline extraction followed by acidification. SiO2 xerogel was prepared by extracting the GS to become sodium silicate (Na2SiO3) assisted by a base NaOH and precipitated using H2SO4 as a gelation agent. The FTIR analysis of the SiO2 xerogel showed a group of silanol (Si-OH) and siloxane (Si-O-Si). The XRD analysis indicated that SiO2 xerogel was amorphous. Furthermore, it was observed from nitrogen absorption-desorption using BET (Breneur-Emmet-Teller) method test that decreased pH tends to the specific surface area increase, and the pore size becomes decrease. The largest specific surface area observed at SiO2 xerogel prepared at pH of 5.5 reached 400.10 m2/g with a pore size of 4.5 nm. The pore sized for all cases was in the range of 4 ~12 nm, indicating that the SiO2 xerogels were mesoporous. Pore size of the as-prepared silica affected the thermal stability property of the sample.

Keywords


  1. Abdolalipouradl. M, Khalilarya, S, and Jafarmadar. S, “Energy and Exergy Analysis of a New Power, Heating, Oxygen and Hydrogen Cogeneration Cycle Based on the Sabalan Geothermal Wells”, International Journal of Engineering, Transactions C: Aspects, Vol. 32, No. 3, (2019), 445-450, doi: 10.5829/ije.2019.32.03c.13.
  2. Manzella. A, Bonciani. R, and Allansdottir. A, “Environmental and social aspects of geothermal energy in Italy”, Geothermics, Vol. 72, (2017), 232-248, doi: 10.1016/j.geothermics.2017.11.015.
  3. Finster. M, Clark. C, Schroeder. J, and Martino. L, “Geothermal produced fluids: Characteristics, treatment technologies, and management options”, Renewable and Sustainable Energy Reviews, Vol. 50, (2015), 952-966, doi: 10.1016/j.rser.2015.05.059.
  4. Affandi. S, Setyawan. H, Winardi. S, Purwanto. A, and Balqis. R, "A facile method for production of high-purity silica xerogels from bagasse ash", Advanced Powder Technology, Vol. 20, (2015) 468-472, doi: 10.1016/j.apt.2009.03.008.
  5. Brinker. C. J, and Scherer. W, “Sol-gel sciences,’ in The Processing and the Chemistry of Sol-Gel Processing”, Academic Press, Vol. 26, No. 2, (1990), 211-212, doi: 10.1016/0254-0584(90)90039-d.
  6. Mathieu. B, Blacher. S, Pirard. R, Pirard. J. P, Sahouli. B, and Brouers. F, “Freeze-dried resorcinol-formaldehyde gels”, Journal of Non-Crystalline Sollids, Vol. 212, No. 2-3, (1997), 250-261, doi: 10.1016/S0022-3093(97)00025-2.
  7. Klvana. D, Chaouki. J, Repellin-Lacroix. M, and Pajonk. G. M, “A new method of preparation of aerogel-like materials using a freeze-drying process”, Le Journal de Physique Colloques, Vol. 50, (1989), C4-29-C4-32, doi: 10.1051/jphyscol.
  8. Pajonk. G. M, “Drying Methods Preserving the Textural Properties of Gels”, Le Journal de Physique Colloques, Vol. 24, No. C4, (1989), C4-13-C4-22, doi: 10.1051/jphyscol:1989403.
  9. Gurav. J. L, Rao. A. V, Rao. A. P, Nadargi. D. Y, and Bhagat. S. D, “Physical properties of sodium silicate based silica aerogels prepared by single step sol-gel process dried at ambient pressure” , Journal Alloys and Compounds, Vol. 476, No. 1-2, (2009), 397-402, doi: 10.1016/j.jallcom.2008.09.029.
  10. Shebl. M, Saif. M, Nabeel. A. I, and Shokry. R,  “New non-toxic transition metal nanocomplexes and Zn complex-silica xerogel nanohybrid: Synthesis, spectral studies, antibacterial, and antitumor activities”, Journal of Molecular Structure, Vol. 1118, (2016),  335-343, doi: 10.1016/j.molstruc.2016.04.037.
  11. Capeletti. L. B, do Carmo. M. A. M, Cardoso. M. B, and dos Santos. J. H. Z, “Hybrid silica based catalysts prepared by the encapsulation of zirconocene compound via non-hydrolytic sol-gel method for ethylene polymerization”, Applied Catalysis A: General, Vol. 560, (2018), 225-235, doi: 10.1016/j.apcata.2018.03.013.
  12. Campos-Molina. M. J, Corral-Pérez. J. J, Mariscal. R, Granados. M. L, “Silica-poly(styrenesulphonic acid) nanocomposites as promising acid catalysts”, Catalysis Today, Vol. 279, (2017), 155-163, doi: 10.1016/j.cattod.2016.06.042.
  13. Jaiboon. V, Yoosuk. B, and Prasassarakich. P,  “Amine modified silica xerogel for H2S removal at low temperature”, Fuel Processing Technology, Vol. 128, (2014), 276-282, doi: 10.1016/j.fuproc.2014.07.032.
  14. Salehi. S, and Anbia. M, “Investigation of Carbon Dioxide Adsorption on Amino-Functionalized Mesoporous Silica", International Journal of Engineering, Transactions C: Aspects, Vol. 28, No. 6, (2015), 848-854 doi: 10.5829/idosi.ije.2015.28.06c.04.
  15. Castillo. X, Pizarro. J, and Ortiz. C, “A cheap mesoporous silica from fly ash as an outstanding adsorbent for sulfate in water”, Microporous and Mesoporous Materials, Vol. 272, (2018), 184-192, doi: 10.1016/j.micromeso.2018.06.014.
  16. Scherdel. C, and Reichenauer. G, “Highly porous silica xerogels without surface modification”, The Journal of Supercritical Fluids, Vol. 106, (2015), 160-166, doi: 10.1016/j.supflu.2015.08.016.
  17. Echeverría. J. C, Estella. J, Barbería. V, Musgo. J, and Garrido. J. J, “Synthesis and characterization of ultramicroporous silica xerogels”, Journal of Non-Crystalline Solids, Vol. 356, No. 6-8, (2010), 378-382, doi: 10.1016/j.jnoncrysol.2009.11.044.
  18. Adhikari. C, Mishra. A, Nayak. D, Chakraborty. A, “Drug delivery system composed of mesoporous silica and hollow mesoporous silica nanospheres for chemotherapeutic drug delivery”, Journal of Drug Delivery Science and Technology, Vol. 45, (2018), 303-314, doi: 10.1016/j.jddst.2018.03.020.
  19. de Lima. H. H. C, Kupfer. V. L, Moisés. M. P, Rinaldi. J. C, Felisbino. S. L, Rubira. A. F, and Rinaldi. A. W, “Bionanocomposites based on mesoporous silica and alginate for enhanced drug delivery”, Carbohydrate Polymers, Vol. 196, (2018), 126-134, doi: 10.1016/j.carbpol.2018.04.107.
  20. Vali. K. S, Murugan. B. S, Reddy. S. K, Farsangi. E. N, “Eco-friendly hybrid concrete using pozzolanic binder and glass fibers”, International Journal of Engineering Transactions A : Basics, Vol. 33, No. 7, (2020), 1183-1191, doi: 10.5829/ije.2020.33.07a.03.
  21. Yakushkin. S. S, Balaev. D. A, Dubrovskiy. A. A, Semenov. S. V, Knyazev. Y. V, Bayukov. O. A, Kirillov. V. L, Ivantsov. R. D, Edelman. I. S, and Martyanova. O. N, “ε-Fe2O3 nanoparticles embedded in silica xerogel - Magnetic metamaterial”, Ceramics International, Vol. 44, No. 15, (2018), 17852-17857, doi: 10.1016/j.ceramint.2018.06.254.
  22. Saputra. R. E, Astuti. Y, and Darmawan. A, “Hydrophobicity of silica thin films: The deconvolution and interpretation by Fourier-transform infrared spectroscopy”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 199, (2018), 12-20, doi: 10.1016/j.saa.2018.03.037.
  23. Nuryono and Narsito, “Pengaruh Konsentrasi Asam Terhadap Karakter Silika Gel Hasil Sintesis dari Natrium Silikat”, Indonesian Journal of Chemistry, Vol. 5, No. 1, (2005), 23-30.
  24. Guo. Q, Huang. D, Kou. X, Cao. W, Li. L, Ge. L, and Li. J,“Synthesis of disperse amorphous SiO2 nanoparticles via sol-gel process,” Ceramics International, Vol. 43, No. 1, (2017), 192-196, doi: 10.1016/j.ceramint.2016.09.133.
  25. Munasir, Triwikantoro, Zainuri. M, and Darminto, “Synthesis of SiO2 nanopowders containing quartz and cristobalite phases from silica sands” , Materials Science- Poland, Vol. 33, No. 1, (2015), 47-55, doi: 10.1515/msp-2015-0008.
  26. Mujiyanti. D. R, Nuryono, and Kunart. E. S, “Sintesis dan karakterisasi silika gel dari abu sekam padi yang diimobilisasi dengan 3-(trimetoksisilil)-1-propantiol,” Sains dan Terapan Kimia, Vol. 4, (2010), 150-167
  27. Utami. W. S, Herdianita. N. R, and Atmaja. R. W,“The Effect of Temperature and pH on the Formation of Silica Scaling of Dieng Geothermal Field, Central Java, Indonesia,” Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, (2014), 24-26.
  28. Lion. M, Maache. M, Lavalley. J. C, Ramis. G, Busca. G, Rossi. P. F, and Lorenzelli. V, “FT-IR study of the Brønsted acidity of phosphated and sulphated silica catalysts", Journal of Molecular Structure, Vol. 218, (1990), 417-422.
  29. Muljani. S, Setyawan. H, Wibawa. G and Altway. A, “A facile method for the production of high-surface-area mesoporous silica gels from geothermal sludge”, Advanced Powder Technology, Vol. 25, No. 5, (2014), 1593-1599. doi: 10.1016/j.apt.2014.05.012.
  30. Jung. I. K, Gurav. J. L, Bangi. U. K. H, Baek. S, Park. H. H, “Silica xerogel films hybridized with carbon nanotubes by single step sol-gel processing”, Journal of Non-Crystalline Solids, Vol. 358, No. 3, (2012), 550-556, doi: 10.1016/j.jnoncrysol.2011.11.009.
  31. Witoon. T, Tatan. N, Rattanavichian. P, Chareonpanich. M, “Preparation of silica xerogel with high silanol content from sodium silicate and its application as CO2 adsorbent”, Ceramics International, Vol. 37, No. 7, (2011), 2297-2303, doi: 10.1016/j.ceramint.2011.03.020.
  32. Lee. J, Kim. J, Lee. B. J, Lee. J, Lee. H. W, Hong. M, Park. H, Shim. D. I, Cho. H. H, Kwon. K, “Characterization of mesoporous silica thin films for application to thermal isolation layer”, Thin Solid Films, Vol. 660, (2018), 715-719, doi: 10.1016/j.tsf.2018.04.001.
  33. Zhuang. Q, and Miller. J. M, “One-pot sol-gel synthesis of sulfated ZrO2-SiO2 catalysts for alcohol dehydration,” Canadian Journal of Chemistry, Vol. 79, No. 8, (2001), 1220-1223, doi: 10.1139/cjc-79-8-1220.
  34. Bleam. W. F, “Adsorption and Surface Chemistry”, Soil and Environmental Chemistry, (2012), 371-407, doi: 10.1016/b978-0-12-415797-2.00009-1.
  35. Liu. C, and Komarneni. S, “Carbon-silica xerogel and aerogel composites”, Journal of Porous Materials, Vol. 1, No. 1, (1995), 75-84,  doi: 10.1007/BF00486526.
  36. Mosquera. M, J, Santos. D, d. los. M, Valdez-Castro. L, Esquivias. L,  “New route for producing crack-free xerogels: Obtaining uniform pore size”, Journal of Non-Crystalline Solids, Vol. 354, No. 2-9, (2008), 645-650, doi: 10.1016/j.jnoncrysol.2007.07.095.
  37. Yu. H, Tong. Z, Yue. S, Li. X, Su. D, and Ji. H, “Effect of SiO2 deposition on thermal stability of Al2O3-SiO2 aerogel,” Journal of the European Ceramic Society, Vol. 41, No. 1, (2021), 580-589, doi: 10.1016/j.jeurceramsoc.2020.09.015.