Retrofitting of RC Beams using Reinforced Self-compacting Concrete Jackets Containing Aluminum Oxide Nanoparticles

Document Type : Original Article


Civil Engineering Department, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran


The purpose of this study was to introduce a proposed method to retrofit RC beams. For this purpose self-compacting concrete containing aluminium oxide nanoparticles (ANPs) and silica fume (SF) was used in RC jackets. The laboratory experiment and numerical simulation were used to investigate the behavior of the beams. The experimental variables were included the amount of ANPs used in the jackets (0 and 2.5% by weight of cement) and the surface interaction between beam and jacket (75% and 100% of the side and bottom surfaces of the beam). Five RC beams with a length of 1.4 m and the same dimensions were made and subjected to four-point loading. After completing the laboratory steps, RC beams were simulated according to laboratory conditions using the finite element method and ABAQUS software. After verifying the used method, parametric analysis was performed and parameters such as beam span length (1.5, 3, 4.5 m), concrete jacket thickness (4, 8, and 12 cm), and the diameter of the bars used in the jacket (8, 10 and 12 mm) were examined. The results showed that the use of RC jackets containing ANPs, depending on the jacket thickness, the diameter of the bars used in the jacket, and the length of the beam span increased the beams flexural strength by 155 to 447%. It was observed that the crushing of concrete without nanoparticles compared to concrete contain nanoparticles is more severe because nanoparticles affected the concrete matrix and reduced its crushing in RC jackets.


1.     Osman, B. H., Wu, E., Ji, B., and S Abdelgader, A. M., "A state of the art review on reinforced concrete beams with openings retrofitted with FRP", International Journal of Advanced Structural Engineering, Vol. 8, No. 3, (2016), 253–267. doi:10.1007/s40091-016-0128-7
2.     Negro, P., and Mola, E., "A performance based approach for the seismic assessment and rehabilitation of existing RC buildings", Bulletin of Earthquake Engineering, Vol. 15, No. 8, (2017), 3349–3364. doi:10.1007/s10518-015-9845-8
3.     Seifi, A., Hosseini, A., Marefat, M. S., and Zareian, M. S., "Improving seismic performance of old-type RC frames using NSM technique and FRP jackets", Engineering Structures, Vol. 147, (2017), 705–723. doi:10.1016/j.engstruct.2017.06.034
4.     Durgadevi, S., Karthikeyan, S., Lavanya, N., and Kavitha, C., "A review on retrofitting of reinforced concrete elements using FRP", Materials Today: Proceedings, (In Press), (2020). doi:10.1016/j.matpr.2020.03.148
5.     Jose, J., Nagarajan, P., and Remanan, M., "Utilisation of Ultra-High Performance Fiber Reinforced Concrete(UHPFRC) for Retroffiting – a Review", IOP Conference Series: Materials Science and Engineering, Vol. 936, No. 1, (2020), 012033. doi:10.1088/1757-899X/936/1/012033
6.     Kafi, M. A., Kheyroddin, A., and Omrani, R., "New Steel Divergent Braced Frame Systems for Strengthening of Reinforced Concrete Frames", International Journal of Engineering, Transaction A: Basics, Vol. 33, No. 10, (2020), 1886–1896. doi:10.5829/ije.2020.33.10a.07
7.     Jahangir, H., and Bagheri, M., "Evaluation of Seismic Response of Concrete Structures Reinforced by Shape Memory Alloys (Technical Note)", International Journal of Engineering, Transaction C: Aspects, Vol. 33, No. 3, (2020), 410–418. doi:10.5829/ije.2020.33.03c.05
8.     Zhu, Y., Zhang, Y., Hussein, H. H., and Chen, G., "Flexural strengthening of reinforced concrete beams or slabs using ultra-high performance concrete (UHPC): A state of the art review", Engineering Structures, Vol. 205, (2020), 110035. doi:10.1016/j.engstruct.2019.110035
9.     Tawfik, T. A., Aly Metwally, K., EL-Beshlawy, S. A., Al Saffar, D. M., Tayeh, B. A., and Soltan Hassan, H., "Exploitation of the nanowaste ceramic incorporated with nano silica to improve concrete properties", Journal of King Saud University - Engineering Sciences, (In Press), (2020). doi:10.1016/j.jksues.2020.06.007
10.   Sangi, M., Vasegh Amiri, J., Abdollahzadeh, G., and Dehestani, M., "Experimental study on fracture behavior of notched self‐consolidating concrete beam strengthened with off‐axis CFRP sheet", Structural Concrete, Vol. 20, No. 6, (2019), 2122–2137. doi:10.1002/suco.201800204
11.   Shadmand, M., Hedayatnasab, A., and Kohnehpooshi, O., "Retrofitting of Reinforced Concrete Beams with Steel Fiber Reinforced Composite Jackets", International Journal of Engineering, Transaction B: Applications, Vol. 33, No. 5, (2020), 770–783. doi:10.5829/ije.2020.33.05b.08
12.   Rahmani, I., Maleki, A., and Lotfollahi-Yaghin, M. A., "A Laboratory Study on the Flexural and Shear Behavior of RC Beams Retrofitted with Steel Fiber-Reinforced Self-compacting Concrete Jacket", Iranian Journal of Science and Technology, Transactions of Civil Engineering, (2020), 1–17. doi:10.1007/s40996-020-00547-x
13.   Trang, G. T. T., Linh, N. H., Linh, N. T. T., and Kien, P. H., "The Study of Dynamics Heterogeneity in SiO2 Liquid", HighTech and Innovation Journal, Vol. 1, No. 1, (2020), 1–7. doi:10.28991/HIJ-2020-01-01-01
14.   Pinheiro, A. P., "Architectural Rehabilitation and Sustainability of Green Buildings in Historic Preservation", HighTech and Innovation Journal, Vol. 1, No. 4, (2020), 172–178. doi:10.28991/HIJ-2020-01-04-04
15.   Das, K., Sen, S., and Biswas, P., "A Review Paper – on the Use of Nanotechnology in Construction Industry", Proceedings of Industry Interactive Innovations in Science, Engineering & Technology (I3SET2K19), (2020), 1–3. doi:10.2139/ssrn.3526716
16.   Qasim, O. A., and Al-Ani, S. A., "Effect of nano-silica silica fume and steel fiber on the mechanical properties of concrete at different ages", AIP Conference Proceedings, Vol. 2213, No. 1, (2020), 020198. doi:10.1063/5.0000209
17.   Shaiksha Vali, K., Murugan, B. S., Reddy, S. K., and Noroozinejad Farsangi, E., "Eco-friendly Hybrid Concrete Using Pozzolanic Binder and Glass Fibers", International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 7, (2020), 1183–1191. doi:10.5829/ije.2020.33.07a.03
18.   Ghanbari, M., Kohnehpooshi, O., and Tohidi, M., "Experimental Study of the Combined Use of Fiber and Nano Silica Particles on the Properties of Lightweight Self Compacting Concrete", International Journal of Engineering, Transaction B: Applications, Vol. 33, No. 8, (2020), 1499–1511. doi:10.5829/ije.2020.33.08b.08
19.   Potapov, V., Efimenko, Y., Fediuk, R., and Gorev, D., "Effect of hydrothermal nanosilica on the performances of cement concrete", Construction and Building Materials, Vol. 269, (2021), 121307. doi:10.1016/j.conbuildmat.2020.121307
20.   Nazari, A., and Riahi, S., "Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles", Materials Science and Engineering: A, Vol. 527, Nos. 29–30, (2010), 7663–7672. doi:10.1016/j.msea.2010.08.095
21.   Nazari, A., and Riahi, S., "RETRACTED: Al2O3 nanoparticles in concrete and different curing media", Energy and Buildings, Vol. 43, No. 6, (2011), 1480–1488. doi:10.1016/j.enbuild.2011.02.018
22.   Mosalman, S., Rashahmadi, S., and Hasanzadeh, R., "The Effect of TiO2 Nanoparticles on Mechanical Properties of Poly Methyl Methacrylate Nanocomposites", International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 5, (2017), 807–813. doi:10.5829/idosi.ije.2017.30.05b.22
23.   Nazari, A., Riahi, S., Riahi, S., Shamekhi, S. F., and Khademno, A., "Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete Enhancing the adhesion of diamond-like carbon films to steel substrates using silicon-containing interlayers View project Influence of Al2O3 nanoparticles ", Journal of American Science, Vol. 6, No. 5, (2010), 6–9.
24.   Sobolev, K., Flores, I., Hermosillo, R., and Torres-Martínez, L. M., "Nanomaterials and Nanotechnology for High-Performance Cement Composites", Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, (2006), 91–118.
25.   Joshaghani, A., Balapour, M., Mashhadian, M., and Ozbakkaloglu, T., "Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study", Construction and Building Materials, Vol. 245, (2020), 118444. doi:10.1016/j.conbuildmat.2020.118444
26.   Meddah, M. S., Praveenkumar, T. R., Vijayalakshmi, M. M., Manigandan, S., and Arunachalam, R., "Mechanical and microstructural characterization of rice husk ash and Al2O3 nanoparticles modified cement concrete", Construction and Building Materials, Vol. 255, (2020), 119358. doi:10.1016/j.conbuildmat.2020.119358
27.   Li, Z., Wang, H., He, S., Lu, Y., and Wang, M., "Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite", Materials Letters, Vol. 60, No. 3, (2006), 356–359. doi:10.1016/j.matlet.2005.08.061
28.   Oltulu, M., and Şahin, R., "Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study", Energy and Buildings, Vol. 58, (2013), 292–301. doi:10.1016/j.enbuild.2012.12.014
29.   Behfarnia, K., and Salemi, N., "The effects of nano-silica and nano-alumina on frost resistance of normal concrete", Construction and Building Materials, Vol. 48, (2013), 580–584. doi:10.1016/j.conbuildmat.2013.07.088
30.   Ismael, R., Silva, J. V., Carmo, R. N. F., Soldado, E., Lourenço, C., Costa, H., and Júlio, E., "Influence of nano-SiO2 and nano-Al2O3 additions on steel-to-concrete bonding", Construction and Building Materials, Vol. 125, (2016), 1080–1092. doi:10.1016/j.conbuildmat.2016.08.152
31.   Niewiadomski, P., Stefaniuk, D., and Hoła, J., "Microstructural Analysis of Self-compacting Concrete Modified with the Addition of Nanoparticles", Procedia Engineering, Vol. 172, (2017), 776–783. doi:10.1016/j.proeng.2017.02.122
32.   Ghazanlou, S. I., Jalaly, M., Sadeghzadeh, S., and Korayem, A. H., "A comparative study on the mechanical, physical and morphological properties of cement-micro/nanoFe3O4 composite", Scientific Reports, Vol. 10, No. 1, (2020), 1–14. doi:10.1038/s41598-020-59846-y
33.   Heidarzad Moghaddam, H., Maleki, A., and Lotfollahi-Yaghin, M. A., "Durability and Mechanical Properties of Self-compacting Concretes with Combined Use of Aluminium Oxide Nanoparticles and Glass Fiber", International Journal of Engineering, Transaction A: Basics, Vol. 34, No. 1, (2021), 26–38. doi:10.5829/ije.2021.34.01a.04
34.   Zeinolabedini, A., Tanzadeh, J., and Mamodan, M. T., "Laboratory Investigation of Ultra-High–Performance Fiber-Reinforced Concrete Modified with Nanomaterials", Journal of Testing and Evaluation, Vol. 49, No. 1, (2021), 20180806. doi:10.1520/JTE20180806
35.   Muzenski, S., Flores-Vivian, I., and Sobolev, K., "Hydrophobic modification of ultra-high-performance fiber-reinforced composites with matrices enhanced by aluminum oxide nano-fibers", Construction and Building Materials, Vol. 244, (2020), 118354. doi:10.1016/j.conbuildmat.2020.118354
36.   Faez, A., Sayari, A., and Manie, S., "Mechanical and Rheological Properties of Self-Compacting Concrete Containing Al2O3 Nanoparticles and Silica Fume", Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 44, No. S1, (2020), 217–227. doi:10.1007/s40996-019-00339-y
37.   Self-Compacting Concrete European Project Group, The European guidelines for self-compacting concrete: Specification, production and use. International Bureau for Precast Concrete (BIBM), (2005).
38.   ASTM Standard C39/C39M-18, Standard test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken PA, (2018).
39.   ASTM Standard C496/C496M-17 Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM International, West Conshohocken PA, (2017).
40.   ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, PA, (2013).
41.   Hibbitt, H., Karlsson, B., and Sorensen, E., ‘ABAQUS user’s manual.’ Providence, RI: Dassaulat Systems Simulia Corp, (2016).
42.   ASTM Standard C33/C33M-18, Standard specification for concrete aggregates. ASTM International, West Conshohocken PA, (2018).
43.   Hosen, M. A., Jumaat, M. Z., Alengaram, U. J., and Ramli Sulong, N. H., "CFRP strips for enhancing flexural performance of RC beams by SNSM strengthening technique", Construction and Building Materials, Vol. 165, (2018), 28–44. doi:10.1016/j.conbuildmat.2017.12.052