A Novel Control Strategy of an Islanded Microgrid Based on Virtual Flux Droop Control and Direct Flux Fuzzy Control

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran

2 Department of Energy Technology, Aalborg University, Aalborg, Denmark

3 School of Engineering, Deakin University, Geelong, Australia

Abstract

This paper proposes a novel control strategy of an islanded microgrid based on virtual flux droop (VFD) control. In the conventional VFD method, the direct flux control (DFC) technique is used to generate the switching signals using the hysteresis regulators and a switching look-up table. Therefore, the voltage and the current ripples are inevitable. Moreover, as a single switching vector is applied in each control period and none of the switching vectors can produce the desired voltage, the desired dynamic performance is not achieved. Here, a novel direct flux fuzzy control (DFFC) technique is proposed to choose the best switching vector based on fuzzy logic. Furthermore, only a fraction of the control period is allocated to the appropriate active switching vector which is selected by the DFFC technique whereas the rest of the time is allocated to a null vector. The duty cycle of the selected active switching vector is optimized using a simple and robust mechanism. In order to evaluate the performance of the proposed method, an islanded microgrid and the proposed control strategy is simulated in Matlab/Simulink software. The results prove that the dynamic performance response is improved and the demanded load power is proportionately shared between the sources, while the voltage and current ripples are significantly reduced

Keywords


  1. Chen. Y., Guerrero. J. M., Shuai. Z., Chen. Z, Zhou. L., and Luo. A., “Fast reactive power sharing, circulating current and resonance suppression for parallel inverters using resistive-capacitive output impedance,” IEEE Transactions on Power Electronics, Vol. 31, (2016), 5524-5537. DOI: 10.1109/TPEL.2015.2493103.
  2. Zhong. Q. –C., and Hornik. T., “Parallel operation of inverters,” in Control of Power Inverters in Renewable Energy and Smart Grid Integration, John Wiley and Sons, London, (2013), 297-333, (Chapter 19). DOI: 10.1002/9781118481806.ch19.
  3. Hosseinzadeh. N., Khanabdal. S., Al-Jabri. Y., Al-Abri. R., Hinai. A., and Banejad. M, “Voltage stabiliry of microgrids,” in Variability, Scalability and Stability of Microgrids, IET, London, (2019), 327-376, (Chapter 10). DOI: 10.1049/PBPO139E_ch10.
  4. Sagar. G. V. R., and Debela. T., “Implementation of optimal load balancing strategy for hybrid energy management system in DC/AC microgrid with PV and battery storage,” International Journal of Engineering, Transactions A: Basics, Vol. 32, (2019), 1437-1445. DOI: 10.5829/IJE.2019.32.10A.13.
  5. Gholami. M., “Islanding detection method of distributed generation based on wavenet,” International Journal of Engineering, Transactions B: Applications, Vol. 32, (2019), 242-248. DOI: 10.5829/IJE.2019.32.02b.09.
  6. Heidari. M., and Tarafdar Hagh. M., “Optimal reconfiguration of solar photovoltaic arrays using a fast parallelized particle swarm optimization in confront of partial shading,” International Journal of Engineering, Transactions B: Applications, Vol. 32, (2019), 1177-1185. DOI: 10.5829/IJE.2019.32.08B.14.
  7. Han. H., Hou. X., Yang. J., Wu. J., Su. M., and Guerrero. J. M., “Review of power sharing control strategies for islanding operation of AC microgrids,” IEEE Transactions on Smart Grid, Vol. 7, (2016), 200-215. DOI: 10.1109/TSG.2015.2434849.
  8. He. J., Pan. Y., Liang. B., and Wang. C., “A simple decentralized islanding microgrid power sharing method without using droop control,” IEEE Transactions on Smart Grid, Vol. 9, (2018), 6128-6139. DOI: 10.1109/TSG.2017.2703978.
  9. Chauhan. R. K., and Chauhan. K., “Distributed energy resources in Microgrid: integration, challenges and optimization,” Elsevier, (2019), 33-56, (Chapter 2). DOI: 10.1016/B978-0-12-817774-7.00002-8.
  10. Mondal. A., Illindala. M. S., Khalsa. A. S., Klapp. D. A., and Eto. J. H., “Design and operation of smart loads to prevent stalling in a microgrid,” IEEE Transactions on Industry Applications, Vol. 52, (2016), 1184-1192. DOI: 10.1109/TIA.2015.2483579.
  11. Lashkar Ara, A., Bagheri Tolabi, H., and Hosseini, R., “Dynamic modeling and controller design of distribution static compensator in a microgrid based on combination of fuzzy set and galaxy-based search algorithm,” International Journal of Engineering-Transactions A: Basics, Vol. 29, (2016), 1392-1400. DOI: 10.5829/idosi.ije.2016.29.10a.10.
  12. Lu. X., Yu. X., Lai. J., Wang. Y., and Guerrero. J. M., “A novel distributed secondary coordination control approach for islanded microgrids,” IEEE Transactions on Smart Grid, Vol. 9, (2018). 2726-2740. DOI: 10.1109/TSG.2016.2618120.
  13. Nutkani. I. U., Loh. P. C., Wang. P., and Blaabjerg. F, “Linear decentralized power sharing schemes for economic operation of AC microgrids,” IEEE Transactions on Industrial Electronics, Vol. 63, (2016), 225-234. DOI: 10.1109/TIE.2015.2472361.
  14. Mahmood. H., Michaelson. D., and Jiang. J., “Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances,” IEEE Transactions on Power Electronics, Vol. 30, (2015), 1605-1617. DOI: 10.1109/TPEL.2014.2314721.
  15. Lou. G., Gu. W., Xu. Y., Cheng. M., and Liu. W., “Distributed MPC-based secondary voltage control scheme for autonomous droop-controlled microgrids,” IEEE Transactions on Sustainable Energy, Vol. 8, (2017), 792-804. DOI: 10.1109/TSTE.2016.2620283.
  16. Lai. J., Zhou. H., Lu. X., Yu. X., and Hu. W., “Droop-based distributed cooperative control for microgrids with time-varying delays,” IEEE Transactions on Smart Grid, Vol. 7, (2016), 1775-1789. DOI: 10.1109/TSG.2016.2557813.
  17. Wu. X., and Shen. C., “Distributed optimal control for stability enhancement of microgrids with multiple distributed generators,” IEEE Transaction on Power Systems, Vol. 32, (2017), 4045-4059. DOI: 10.1109/TPWRS.2017.2651412.
  18. Yu. K., Ai. Q., Wang. S., Ni. J., and Lv. T., “Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model,” IEEE Transactions on Smart Grid, Vol. 7, (2016), 695-705. DOI: 10.1109/TSG.2015.2501316.
  19.  Kim. J., Guerrero. J. M., Rodriguez. P., Teodorescu. R., and Nam. K., “Mode adaptive droop control with virtual output impedances for an inverter-based flexible AC microgrid,” IEEE Transactions Power Electronics, Vol. 26, (2011), 689-701. DOI: 10.1109/TPEL.2010.2091685.
  20. Zhang. J., Shu. J., Ning. J., Huang. L., and Wang. H., “Enhanced proportional power sharing strategy based on adaptive virtual impedance in low-voltage networked microgrid,” IET Generation, Transmission & Distribution, Vol. 12, (2018), 2566-2576. DOI: 10.1049/iet-gtd.2018.0051.
  21. Zhong. Q. –C, “Robust droop controller for accurate proportional load sharing among inverters operated in parallel,” IEEE Transactions on Industrial Electronics, Vol. 60, (2013), 1281-1290. DOI: 10.1109/TIE.2011.2146221.
  22. Zhang. M., Song. B., and Wang. J., “Circulating current control strategy based on equivalent feeder for parallel inverters in islanded microgrid,” IEEE Transactions on Power Systems, Vol. 34, (2019), 595-605. DOI: 10.1109/TPWRS.2018.2867588.
  23. Chen. J., Yue. D., Dou. C., Chen. L., Weng. S., and Li. Y., “A virtual complex impedance based  droop method for parallel-connected inverters in low-voltage AC microgrids,” IEEE Transactions on. Industrial Informatics, Vol. 17, (2021), 1763-1773. DOI: 10.1109/TII.2020.2997054.
  24. Lee. C. –T, C. Chu. –C, and Cheng. P. –T., “A new droop control method for the autonomous operation of distributed energy resource interface converters,” IEEE Transactions on Power Electronics, Vol. 28, (2013), 1980-1993. DOI: 10.1109/TPEL.2012.2205944.
  25. Zhou, J., and Cheng, P. “A modified  droop control for accurate reactive power sharing in distributed generation microgrid,” IEEE Transactions on Industry Applications, Vol. 55, (2019), 4100-4109. DOI: 10.1109/TIA.2019.2903093.
  26. Hu. J., Zhu. J., Dorrell. D. G., and Guerrero. J. M., “Virtual flux droop method—A new control strategy of inverters in microgrids,” IEEE Transactions on Power Electronics, Vol. 29, (2014), 4704-4711. DOI: 10.1109/TPEL.2013.2286159.
  27. Ashabani. M., Mohamed. Y. A. -R. I., Mirsalim. M., and Aghashabani. M., “Multivariable droop control of synchronous current converters in weak grids/microgrids with decoupled dq-axes currents,” IEEE Transactions on Smart Grid, Vol. 6, (2015), 1610-1620. DOI: 10.1109/TSG.2015.2392373.
  28. Heydari. R., Dragicevic. T., and Blaabjerg. F., “High-bandwidth secondary voltage and frequency control of VSC-based AC microgrid,” IEEE Transactions on Power Electronics, Vol. 34, (2019), 11320-11331. DOI: 10.1109/TPEL.2019.2896955.
  29. Gdaim. S., Mtibaa. A., and Mimouni. M. F., “Design and experimental implementation of DTC of an induction machine based on fuzzy logic control on FPGA,” IEEE Transactions Fuzzy Systems, Vol. 3, (2015), 644-655. DOI: 10.1109/TFUZZ.2014.2321612.
  30. Uddin. M. N., and Hafeez. M., “FLC-based DTC scheme to improve the dynamic performance of an IM drive,” IEEE Transactions on Industry Applications, Vol. 48, (2012), 823-831. DOI: 10.1109/TIA.2011.2181287.
  31. Solat. A. R., Ranjbari. A. M., and Mozafari. B., “Coordinated control of doubly fed induction generator virtual inertia and power system oscillation damping using fuzzy logic,” International Journal of Engineering, Transactions A: Basics, Vol. 32, (2019), 536-547. DOI: 10.5829/IJE.2019.32.04A.11.
  32. El Ouanjli. N., Motahhir. S., Derouich. A., El Ghzizal. A., Chebabhi. A., and Taoussi. M., “Improved DTC strategy of doubly fed induction motor using fuzzy logic controller,” Energy Reports, Vol. 5, (2019), 271-279. DOI: 10.1016/j.egyr.2019.02.001.