Analytical Approach of Fe3O4-Ethylene Glycol Radiative Magnetohydrodynamic Nanofluid on Entropy Generation in a Shrinking Wall with Porous Medium

Document Type : Original Article


1 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), ThungKhru, Thailand

2 Department of Mathematics, Padmavani Arts and Science College for Women, Salem, Periyar University, Tamil Nadu, India

3 Department of Mathematics, Faculty of Science and Technology, Phuket Rajabhat University, Phuket, Thailand

4 Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai, Thailand

5 Department of Mathematical Sciences, Shibaura Institute of Technology, Saitama, Japan


This research mainly focuses on the effects of heat absorption/generation and radiation on the hydromagnetic flow of Fe3O4-ethylene glycol nanofluid through a shrinking wall with porous medium and the computation of the entropy generation. We considered basic governing ordinary differential equations into partial differential equations by using appropriate similarity solutions. Moreover, hyper geometric function is employing to determine the formulated problem.  We analyze the effects of appropriate physical parameters on the Bejan number, Entropy generation, Nussult number, skin friction, fluid temperature and velocity profiles. In addition, the derived result of the present study is compared with those in the existing literature. We noted that the presence of heat absorption and suction parameters reduces the Bejan number and increases the entropy generation, and the heat source, porous medium, radiation parameters minimize the entropy production.  The presence of porosity parameter reduced the fluid velocity, improved fluid temperature and minimized the entopy production. Nanosolid volume fraction parameter reduced both Nussult number and skin friction coefficient.


  1. Choi, S.U.S.,“Enhancing thermal conductivity of fluids with nanoparticles”, In: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, Calif, USA, Vol. 66, (1995), 99-105
  2. Ibrahim, W., Shankar, B.,Nandeppanavar, M. M.,“MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet”, International Journal of Heat and Mass Transfer, Vol. 56, (2013) 1-9. DOI: 10.1016/j.ijheatmasstransfer.2012.08.034
  3. Hayat, T.,Imtiaz, M.,Alsaedi, A.,Mansoor, R., “MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions”, Chinese Physics B,  Vol. 23, No. 5, (2014), 054701. DOI:10.1088/1674-1056/23/5/054701
  4. Malvandi A.,Ganji D. D.,“Magnetohydrodynamic mixed convective flow of Al2O3-water nanofluid inside a vertical micro tube”, Journal of Magnetism and Magnetic Materials, Vol. 369, (2014), 132-141.  DOI: 10.1016/j.jmmm.2014.06.037
  5. Rahman, M. M.,Rosca, A.V., Pop, I.,“Boundary layer flow of a nanofluid past a permeable exponentially shrinking/stretching surface with second order slip using Buongiorno’s model”, International Journal of Heat and Mass Transfer, Vol. 77, (2014), 1133-1143. DOI: 10.1016/j.ijheatmasstransfer.2014.06.013
  6. Shaha, Z.,Ebraheem, O.,Alzahranib, Abdullah, D.,Asad, U.,IkramullahK.,“Influence of Cattaneo-Christov model on Darcy-Forchheimer flow of MicropolarFerrofluid over a stretching/shrinking sheet”, International Communications in Heat and Mass Transfer, Vol. 110, (2020), 104385. DOI: 10.1016/j.icheatmasstransfer.2019.104385
  7. Sheikholeslami, M., Bandpy, M. G.,Ellahi, R.,ZeeshanA.,“Simulation of MHD CuO-water nanofluid flow andconvective heat transfer considering Lorentz forces”, Journal of Magnetism and Magnetic Materials, Vol. 369, (2014)  69–80. DOI: 10.1016/j.jmmm.2014.06.017
  8. Jamaludin, A.,Naganthran, K.,Nazar, R., Pop, I.,“MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink”, European Journal of Mechanics / B Fluids, Vol. 84, (2020), 71-80.  DOI: 10.1016/j.euromechflu.2020.05.017
    1. Dero, S.,Rohni, A. M.,Saaban, A.,“Stability analysis of Cu-C6H9NaO7 and Ag-C6H9NaO7nanofluids with effect of viscous dissipation over stretching and shrinking surfaces using a single phase model”, Heliyon, Vol. 6,  (2020),  03510. DOI: 10.1016/j.heliyon.2020.e03510
    2. Haq, R. U.,Raza, A.,Ebrahem A.,Algehynec, Tlili, I.,“Dual nature study of convective heat transfer of nanofluid flow over a shrinking surface in a porous medium”, International Communications in Heat and Mass Transfer, Vol. 114, (2020), 104583. DOI: 0.1016/j.icheatmasstransfer.2020.104583
    3. Shah Naqvi, S.M.R., Muhammad, T.,Saleem, S., Kim, H.M.,“Significance of non-uniform heat generation/absorption in hydromagnetic flow of nanofluid due to stretching/shrinking disk”, Physica A, Vol. 553, (2020), 123970. DOI: 10.1016/j.physa.2019.123970
    4. Khan, U.,Zaib, A.,Zahir S.,Dumitru B., El-Sayed M. Sherif.,“Impact of magnetic field on boundary-layer flow of Sisko liquid comprising nanomaterials migration through radially shrinking/stretching surface with zero mass flux”, Journal of Material Research and Technology,Vol. 9, No.3, (2020), 3699-3709. DOI: 10.1016/j.jmrt.2020.01.107
    5. Khashi'ie, N. S.,Arifina, N. M.,  Pop, I.,Nazar, R.; Hafidzuddin, E.H.,Wahi, N.,“Three-Dimensional Hybrid Nanofluid Flow and Heat Transfer past a Permeable Stretching/Shrinking Sheet with Velocity Slip and Convective Condition”, Chinese Journal of Physics, Vol. 66, (2020), 157-171. DOI: 10.1016/j.cjph.2020.03.032
    6. Gireesha, B. J.,Umeshaiah, M.,Prasannakumara, B. C.,Shashikumar N. S.,Archana, M.,“Magnetohydrodynamic three dimensional boundary layer flow of Jeffrey nanofluid over a nonlinearly permeable stretching sheet”, Physica A, Vol. 549, (2020), 124051. DOI: 10.1016/j.physa.2019.124051
    7. Hayat,T.,Kanwal, M., Qayyum, S.,Alsaedi, A.,“Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation”, Physica A: Statistical Mechanics and its Applications, Vol. 544,  (2020), 123437. DOI: 10.1016/j.physa.2019.123437
    8. Hosseinzadeh, K H.,Mogharrebi, A. R.,Asadi, A.,Sheikhshahrokhdehkordi, M.,Seyedmohammad M.,Ganji, D.D.,“Entropy generation analysis of mixture nanofluid (H2O/C2H6O2)–Fe3O4 flow between two stretching rotating disks under the effect of MHD and nonlinear thermal radiation”, International Journal of Ambient Energy, (2019), 1-13. DOI: 10.1080/01430750.2019.1681294
    9. Shahsavar, A.,Moradi, M.,Bahiraei, M.,“Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus”, Journal of the Taiwan Institute of Chemical Engineers,  (2018), 1-13. DOI: 10.1016/j.jtice.2017.12.029
    10. Mehrali, M.,Sadeghinezhad, E.,Akhiani, A.R.,Latibari, S.T.,Metselaar, H.S.C.,Kherbeet, A.Sh.,Mehrali, M.,“Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field”, Powder Technology, Vol. 308, (2017), 149-157.  DOI: 10.1016/j.powtec.2016.12.024
    11. López, A., Ibáñez, G.,Pantoja, J., Moreira, J.,Lastres, O.,“Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions”, International Journal of Heat and Mass Transfer, Vol. 107, (2017), 982-994. DOI: 10.1016/j.ijheatmasstransfer.2016.10.126
    12. Shukla, N., Rana, P., Anwar Bégb, O.,Bani S.,Kadir, A.,“Homotopy study of magnetohydrodynamic mixed convection nanofluid multiple slip flow and heat transfer from a vertical cylinder with entropy generation”, Propulsion and Power Research, Vol. 8, (2019), 147-162. DOI: 10.1016/j.jppr.2019.01.005
    13. Hayat, T.,Rabiya Y.,SumairaQ.,Alsaedi,A.,“Entropy generation optimization in nanofluid flow by variable thicked sheet”, Physica A: Statistical Mechanics and its Applications, Vol.551, (2020). DOI:
    14. Rana, P.,Shukla, N.,“Entropy generation analysis for non-similar analytical study of nanofluid flow and heat transfer under the influence of aligned magnetic field”, Alexandria Engineering Journal, Vol. 57, (2018), 3299-3310. DOI:
    15. Govindaraju, M., Ganga, B., Abdul Hakeem, A.K.,“Second law analysis on radiative slip flow of nanofluid over a stretching sheet in the presence of lorentz force and heat generation/absorption”, Frontiers in Heat and Mass Transfer (FHMT), Vol. 8, No. 10, (2017), 1-10. DOI:
    16. Abdul Hakeem, A. K.,Govindaraju, M., Ganga, B., Kayalvizhi, M., “Second law analysis for radiative MHD slip flow of a nanofluid over a stretching sheet with non-uniform heat source effect”, ScientiaIranica F,Vol. 23, No. 3, (2016), 1524-1538. DOI: 10.24200/SCI.2016.3916
    17. Ganga,  B., Govindaraju, M., Abdul Hakeem, A.K.,“Effects of Inclined Magnetic Field on Entropy Generation in Nanofluid Over a Stretching Sheet with Partial Slip and Nonlinear Thermal Radiation”, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, (2018), 1-12. DOI:
    18. Rashid.,Sagheer, M.,Hussain, S.,“Entropy formation analysis of MHD boundary layer flow of nanofluid over a porous shrinking wall”, Physica A,  Vol. 536, (2019), 122608.
    19. Seth, G. S., Bhattacharyya, A., Kumar,  R.,Chamkha, A. J.,“Entropy generation in hydromagneticnanofluid flow over a non-linear stretching sheet with Navier’s velocity slip and convective heat transfer”, Physics of Fluids, Vol. 30, (2018), 122003. DOI:
    20. Acharya, N., Das, K., Kumar Kundu, P.,“On the heat transport mechanism and entropy generation in a nozzle of liquid rocket engine using ferrofluid: A computational framework”, Journal of Computational Design and Engineering, Vol.  6, (2019), 739-750. DOI:
    21. Daniel, Y. S., Abdul Aziz, Z., Ismail, Z., Salah, F.,“Entropy analysis in electrical magnetohydrodynamic (MHD) flow of nanofluid with effects of thermal radiation, viscous dissipation, and Chemical reaction”, Theoretical & Applied Mechanics Letters, Vol. 7, (2017), 235-242. DOI:
    22. Ellahi, R., Sultan Z A., Abdul B.,Majeed, A.,“Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation”, Journal of Taibah University for Science, Vol. 12, No. 4, (2018), 476-482. DOI:
    23. SheikholeslamiM.,“New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media”,Computer Methods in Applied Mechanics and Engineering, Vol. 344, (2019),  319-33. DOI:
    24. Riaz, A.,Bhatti, M.M.,Ellahi, R.,Zeeshan, A.,Sait, S.M.,“Mathematical analysis on an asymmetrical wavy motion of blood under the influence entropy generation with convective boundary conditions”, Symmetry, Vol.2, No.1,(2020), 102. DOI:
    25. Döner, A., Comparison of corrosion behaviors of bare Ti and TiO2Emerging Science Journal, Vol. 3, No. 4, (2019), 235-240. DOI: 
    26. Slavova, M, MihaylovaDimitrova, E, Mladenova, E,Abrashev, B,Burdin, B,Vladikova, D., “Zeolite based air electrodes for secondary batteries”,  Emerging Science Journal, Vol. 4, No. 1, (2020), 18-24. DOI: 
    27. Kostikov, Y. A, Romanenkov, A. M., “Approximation of the multidimensional optimal control problem for the heat equation (Applicable to computational fluid dynamics (CFD))”,Civil Engineering Journal, Vol. 6, No. 4, (2020), 743-768. DOI: 10.28991/cej-2020-03091506
    28. Kostikov, Y. A, Romanenkov, A. M., “The technology of calculating the optimal modes of the disk heating (Ball)”, Civil Engineering Journal, Vol. 5, No. 6, (2019),  1395-1406. DOI: 10.28991/cej-2019-03091340
    29. Theingi, M, ThiTun, K,Aung, N. N., “Preparation, characterization and optical property of LaFeO3 nanoparticles via Sol-Gel combustion method”, SciMedicine Journal, Vol. 1, No. 3, (2019), 151-157.
    30. Zhang, W., Yang, X., Wang, T., Peng,  X., Wang, X, “Experimental study of a gas enginedrivenheat pump system for space heating and cooling”,Civil Engineering Journal, Vol. 5, No. 10, (2019), 2282-2295. DOI: 10.28991/cej-2019-03091411
    31. Muhaimin., Kandasamy, R., Azme B. Khamis., “Effects of heat and mass transfer on nonlinear MHD boundary layer flow over a shrinking sheet in the presence of suction”, Applied Mathematics and Mechanics, Vol. 29, No. 10, (2008),1309-1317. DOI: 10.1007/s10483-008-1006-z
    32. Bhattacharyya, K.,“Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over a shrinking sheet with suction/injection”, Frontiers of Chemical Science and Engineering, Vol. 5, No. 3, (2011), 376-384. DOI: 10.1007/s11705-011-1121-0
    33. Rashid, I.,RizwanUlHaq., Khan, Z. H.,Qasem M. Al-Mdallal.,“Flow of water based Alumina and Copper nanoparticles along a moving surface with variable temperature”, Journal of Molecular Liquids, Vol.246, (2017), 354-362. DOI: 10.1016/j.molliq.2017.09.089
    34. Sheikholeslami, M.,Shamlooei, M.,Moradi, R.,“Fe3O4-Ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force”, Journal of Molecular Liquids, Vol. 249, (2018), 427-439. DOI: 10.1016/j.molliq.2017.11.048