Ballistic Testing and Simulation of Co-continuous Ceramic Composite for Body Armour

Document Type : Original Article


1 Department of Mechanical Engineering, PSG College of Technology, Coimbatore, India

2 Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore, India


Co-Continuous Ceramic Composites, referred to as C4, have bi-continuous, interconnected and interpenetrating phases of a metal and ceramic. This bestows such composites with a higher strength to weight ratio compared with traditional composites. In this research work, a C4 composite of AA5083/SiC is fabricated for personal body armour, using gravity infiltration technique. A numerical simulation model of the C4 specimen is developed. This finite element model is utilized to simulate the DoP of a subsonic bullet into the C4 and is estimated as 1.47 mm. The C4 specimen is then, subjected to ballistic tests. A medium velocity projectile with a rated velocity of 326 m/s is used to impact the C4 specimen. The ballistic tests validate the numerical simulation with a DoP of 1.5 mm. Visual inspection reveals brittle cracks and interfacial debonding in the impacted C4. The results indicate that, such composites can potentially be utilized as low cost body armour.


1.     Jiang, L., Jiang, Y. L., Yu, L., Su, N. and Ding, Y. D., “Experimental study and numerical analysis on dry friction and wear performance of co-continuous SiC/Fe-40Cr against SiC/2618 Al alloy composites”, Transactions of Nonferrous Metals Society of China, Vol. 22, No. 12, (2012), 2913-2924. DOI: 10.1016/S1003-6326(11)61550-1
2.     Wang, Q., Zhang, H., Cai, H., Fan, Q., Li, G. and Mu, X., “Simulation analysis of co-continuous ceramic composite dynamic mechanical performance and optimization design”, Computational Materials Science, Vol. 129, (2017), 123-128. DOI: 10.1016/j.commatsci.2016.12.009
3.     Daehn, G. S. and Breslin, M. C., “Co-continuous composite materials for friction and braking applications”, The Journal of The Minerals, Metals and Materials Society, Vol. 58, No. 11, (2006), 87-91. DOI: 10.1007/s11837-006-0235-1
4.     Nong, X. D., Jiang, Y. L., Fang, M., Yu, L. and Liu, C. Y., “Numerical analysis of novel SiC 3D/Al alloy co-continuous composites ventilated brake disc”, International Journal of Heat and Mass Transfer, Vol. 108, (2017), 1374-1382. DOI: 10.1016/j.ijheatmasstransfer.2016.11.108
5.     Fathya, A., Wagiha, M., Abd El-Hamida, M. and Hassan, A.A., “Effect of Mechanical Milling on the Morphology and Structural Evaluation of Al-Al2O3 Nanocomposite Powders”, International Journal of Engineering, Transactions A: Basics, Vol. 27, No. 4, (2014), 625-632. DOI:10.5829/idosi.ije.2014.27.04a.14
6.     Munasir, N., Triwikantoro, T., Zainuri, M., Bäßler, R. and Darminto, D., “Corrosion Polarization Behavior of Al-SiO2 Composites in 1M and Related Microstructural Analysis”, International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 7, (2019), 982-990. DOI: 10.5829/ije.2019.32.07a.11
7.     Gurgen S.,“A Numerical Investigation on Oblique Projectile Impact Behavior of AA5083-H116 Plates”, Politeknik Dergisi, Vol. 22, No. 2, (2019), 293-301. DOI: 10.2339/politeknik.403994
8.     Kaufmann, C., Cronin, D., Worswick, M., Pageau, G. and Beth, A., “Influence of material properties on the ballistic performance of ceramics for personal body armour”, Shock and Vibration, Vol. 10, No. 1, (2003), 51-58. DOI: 10.1155/2003/357637
9.     Chabera, P., Boczkowska, A., Morka, A., Kędzierski, P., Niezgoda,T., Oziębło, A. and Witek, A., “Comparison of numerical and experimental study of armour system based on alumina and silicon carbide ceramics”, Bulletin of the Polish Academy of Sciences, Vol. 63, No. 2, (2015), 363-367. DOI: 10.1515/bpasts-2015-0040
10.   Moslemi Petrudi, A., Vahedi, K., Kamyab, M.H. and Petrudi, M., “Numerical and experimental study of oblique penetration of a blunt projectile into ceramic-aluminum target”, Modares Mechanical Engineering, Vol. 19, No. 5, (2019), 1253-1263.
11.   Luo, D., Wang, Y., Wang, F., Cheng, H., Zhang, B. and Zhu, Y., “The influence of metal cover plates on ballistic performance of silicon carbide subjected to large-scale tungsten projectile”, Materials and Design, (2020), 108659. DOI:10.1016/j.matdes.2020.108659
12.   Chang, H., Binner, J., Higginson, R., Myers, P., Webb, P. and King, G., “Preparation and characterisation of ceramic-faced metal-ceramic interpenetrating composites for impact applications”, Journal of Materials Science, Vol. 46, No. 15, (2011), 5237–5244. DOI:10.1007/s10853-011-5461-4
13.   Poole, L.L., Gonzales, M., French, M.R., Yarberry III, W.A., Moustafa, A.R. and Cordero, Z.C., “Hypervelocity impact of PrintCast 316L/A356 composites”, International Journal of Impact Engineering, Vol. 136, (2020), 103407. DOI:10.1016/j.ijimpeng.2019.103407
14.   Signetti, S., Bosia, F., Ryu, S. and Pugno, N.M., “A combined experimental/numerical study on the scaling of impact strength and toughness in composite laminates for ballistic applications”, Composites Part B: Engineering, (2020), 108090. DOI:10.1016/j.compositesb.2020.108090
15.   Prasanth, A.S. and Ramesh, R., “Investigation of Surface Roughness and Tool Wear in End Milling of Al7075-SiC Co-continuous Composite”, in Materials Design and Applications, Advanced Structured Materials, Vol. 65, (2017), 315-327. DOI:10.1007/978-3-319-50784-2_24
16.   Basyir, A., Bura, R. O. and Lesmana, D., “Experimental consideration of projectile density and hardness effect on its penetration ability in alumina target”, Journal of Defense Acquisition and Technology, Vol. 1, No. 1, (2019), 9-15. DOI:10.33530/jdaat.2019.1.1.9
17.   Rollings, L., Mcdonald, S., Roy, M. and Withers, P., “An investigation into the interface behaviour of an aluminium/silicon carbide fibre metal matrix composite”, European Conference on Spacecraft Structures, Noordwijk, Netherlands, (2018).