Experimental Study on Warm Incremental Tube Forming of AA6063 Aluminum Tubes

Document Type : Original Article


1 Department of Mechanical Engineering, Kar higher Education Institute, Qazvin, Iran

2 Department of Mechanical Engineering, University of Birjand, Birjand, Iran

3 Department of Mechanical Engineering, Faculty of Enghelab-e Eslami, Tehran Branch, Technical and Vocational University (TVU), Tehran, Iran


Effect of temperature on formability of AA6063 aluminum tubes in incremental forming process was investigated. Experiments are performed on AA6063 aluminum tubes. A spirally moving tool incrementally expands the tube wall. The tube is clamped from both ends while the deformation zone is not in contact with the die. A circumferential heating system is used to heat the tube due to the low formability of aluminum alloys at ambient temperature. The effects of process parameters including temperature, radial feed, axial feed and tool linear velocity are investigated in order to obtain the highest formability and surface quality. The results show that with a temperature rise from 100°C to 300°C, the expansion ratio increases from 28% to 34%. Axial feeding and temperature are the most effective parameters on the surface roughness and bulge diameter, respectively.


1    Martins, P., Bay, N., Skjødt, M., and Silva, M., “Theory of single point incremental forming”, CIRP Annals, Vol. 57, No. 1, (2008), 247-252. doi:10.1016/j.cirp.2008.03.047.
2.   Jeswiet, J., Geiger, M., Engel, U., Kleiner, M., Schikorra, M., Duflou, J., Neugebauer, R., Bariani, P., and Bruschi, S., “Metal forming progress since 2000”, CIRP Journal of Manufacturing Science and Technology, Vol. 1, No. 1, (2008), 2-17. doi:10.1016/j.cirpj.2008.06.005.
3.   Ambrogio, G., Filice, L., and Manco, G., “Warm incremental forming of magnesium alloy AZ31”, CIRP Annals, Vol. 57, No. 1, (2008), 257-260. doi:10.1016/j.cirp.2008.03.066.
4.   Ji, Y., and Park, J., “Formability of magnesium AZ31 sheet in the incremental forming at warm temperature”, Journal of Materials Processing Technology, Vol. 201, No. 1-3, (2008), 354-358. doi:10.1016/j.jmatprotec.2007.11.206.
5.   Ji, Y., and Park, J., “Incremental forming of free surface with magnesium alloy AZ31 sheet at warm temperatures”, Transactions of Nonferrous Metals Society of China, Vol. 18, (2008), s165-s169. doi: 10.1016/S1003-6326(10)60195-1.
6.   Fan, G., Gao, L., Hussain, G., and Wu, Z., “Electric hot incremental forming: A novel technique”, International Journal of Machine Tools and Manufacture, Vol. 48, No. 15, (2008), 1688-1692. doi:10.1016/j.ijmachtools.2008.07.010.
7.   Fan, G., Sun, F., Meng, X., Gao, L., and Tong, G., “Electric hot incremental forming of Ti-6Al-4V titanium sheet”, International Journal of Advanced Manufacturing Technology, Vol. 49, No. 9-12, (2010), 941-947. doi: 10.1007/s00170-009-2472-2.
8.   Zhang, Q., Guo, H., Xiao, F., Gao, L., Bondarev, A., and Han, W., “Influence of anisotropy of the magnesium alloy AZ31 sheets on warm negative incremental forming”, Journal of Materials Processing Technology, Vol. 209, No. 15-16, (2009), 5514-5520. doi:10.1016/j.jmatprotec.2009.05.012.
9.   Kim, S., Lee, Y., Kang, S., and Lee, J., “Incremental forming of Mg alloy sheet at elevated temperatures”, Journal of Mechanical Science and Technology, Vol. 21, No. 10, (2007), 1518. doi: 10.1007/BF03177368.
10. Al-Obaidi, A., Kräusel, V., and Landgrebe, D., “Hot single-point incremental forming assisted by induction heating”, International Journal of Advanced Manufacturing Technology, Vol. 82, No. 5-8, (2016), 1163-1171. doi: 10.1007/s00170-015-7439-x.
11. Galdos, L., Sáenz de Argandoña, E., Ulacia, I., and Arruebarrena, G., “Warm incremental forming of magnesium alloys using hot fluid as heating media”, In: Key Engineering Materials, Trans Tech Publ (2012), 815-820. doi:10.4028/www.scientific.net/KEM.504-506.815.
12. VanSy, L., and ThanhNam, N., “Hot incremental forming of magnesium and aluminum alloy sheets by using direct heating system”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 227, No. 8, (2013), 1099-1110. doi:10.1177/0954405413484014.
13. Hashmi, M., “Aspects of tube and pipe manufacturing processes: meter to nanometer diameter”, Journal of Materials Processing Technology, Vol. 179, No. 1-3, (2006), 5-10. doi:10.1016/j.jmatprotec.2006.03.104.
 14. Seyedkashi, S.M.H, Naeini, H.M., Liaghat, G., Mashadi, M.M., Mirzaali, M., Shojaee, K., and Moon, Y.H., “The effect of tube dimensions on optimized pressure and force loading paths in tube hydroforming process”, Journal of Mechanical Science and Technology, Vol. 26, (2012), 1817-1822. doi: 10.1007/s12206-012-0430-7.
15  Aue-u-lan, Y., “Hydroforming of tubular materials at various temperatures”, The Ohio State University, PhD thesis, (2007).
16  Seyedkashi, S.M.H., Naeini, H.M., and Moon, Y.H., “Feasibility study on optimized process conditions in warm tube hydroforming”, Journal of Mechanical Science and Technology, Vol. 28, No. 7, (2014), 2845-2852. doi: 10.1007/s12206-014-0638-9.
17  Kim, B., Van Tyne, C., Lee, M., and Moon, Y.H., “Finite element analysis and experimental confirmation of warm hydroforming process for aluminum alloy”, Journal of Materials Processing Technology, Vol. 187, (2007), 296-299. doi:10.1016/j.jmatprotec.2006.11.201.
18  Teramae, T., Manabe, K., Ueno, K., Nakamura, K., and Takeda, H., “Effect of material properties on deformation behavior in incremental tube-burring process using a bar tool”, Journal of Materials Processing Technology, Vol. 191, No. 1-3, (2007), 24-29. doi:10.1016/j.jmatprotec.2007.03.039.
19  Yang, C., Wen, T., Liu, L., Zhang, S., and Wang, H., “Dieless incremental hole-flanging of thin-walled tube for producing branched tubing”, Journal of Materials Processing Technology, Vol. 214, No. 11, (2014), 2461-2467. doi:10.1016/j.jmatprotec.2014.05.027.
20  Wen, T., Yang, C., Zhang, S., and Liu, L., “Characterization of deformation behavior of thin-walled tubes during incremental forming: a study with selected examples”, International Journal of Advanced Manufacturing Technology, Vol. 78, No. 9-12, (2015), 1769-1780. doi: 10.1007/s00170-014-6777-4.
21  Seyedkashi, S.M.H., Hashemi Ghiri, S.J., Rahmani, F., “Experimental investigation of effective parameters on a new incremental tube bulging method using rotary tool”, International Journal of Advanced Design and Manufacturing Technology, Vol. 10, No. 2, (2017), 83-91.
22  Rahmani, F., Seyedkashi, S.M.H., Hashemi, S.J., “Converting circular tubes into square cross-sectional parts using incremental forming process”, Transactions of Nonferrous Metals Society of China, Vol. 29, No. 11, (2019), 2351-2361. doi: 10.1016/S1003-6326(19)65141-1.
23  SA Faghidian, S.A., Goudar, D., Farrahi, G.H., Smith, D.J., “Measurement, analysis and reconstruction of residual stresses”, The Journal of Strain Analysis for Engineering Design, Vol. 47, No. 4, (2012), 254-264. doi: 10.1177/0309324712441146.
24  Tabatabaei, S. M. R., Alasvand Zarasvand, K., “Investigating the Effects of Cold Bulge Forming Speed on Thickness Variation and Mechanical Properties of Aluminum Alloys: Experimental and Numerical”, International Journal of Engineering, Transactions C: Aspects, Vol. 31, No. 9, (2018), 1602-1608. doi: 10.5829/ije.2018.31.09c.17.
25  Taheri Ahangar, A., Bakhshi-Jooybari, M., Hosseinipour, S. J., Gorji, H., “Improvement of Die Corner Filling of Stepped Tubes Using Warm Hybrid Forming”, International Journal of Engineering , Transactions A: Basics, Vol. 32, No. 4, (2019), 587-595. doi: 10.5829/ije.2019.32.04a.17.