A Coupled Rigid-viscoplastic Numerical Modeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded Aluminum Alloys


1 Departamento de Ingeniería mecánica, Grupo IMTEF, Universidad Autónoma del Caribe, Barranquilla, Colombia

2 Departamento de Ingeniería mecánica, Grupo ICT, Universidad de Córdoba, Montería, Colombia


Shoulder geometry of tool plays an important role in friction-stir welding because it controls thermal interactions and heat generation. This work is proposed and developed a coupled rigid-viscoplastic numerical modeling based on computational fluid dynamics and finite element calculations aiming to understand these interactions. Model solves mass conservation, momentum, and energy equations in three dimensions, using appropriate boundary conditions, considering mass flow as a non-Newtonian, incompressible, viscoplastic material. Boundary conditions of heat transfer and material flow were determined using a sticking/sliding contact condition at tool / workpiece interface. Thermal history, as well as shear stress and rotational speed fields, forces and torque values for three shoulder geometry conditions were calculated. Numerical results of thermal history, torque and forces during welding showed good correlation with experimentally measured data.


1.     Thomas, W.M., “Friction stir welding”, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, US Patent (5), (1991), 460-317.
2.     Mishra, R.S., and Ma, Z.Y., “Friction stir welding and processing”, Materials Science and Engineering: R: Reports,  Vol. 50, No. 1–2, (2005), 1–78.
3.     Rai, R., De, A., Bhadeshia, H.K.D.H., and DebRoy, T., “Friction stir welding tools”, Science and Technology of Welding and Joining,  Vol. 16, No. 4, (2011), 325–342.
4.     Threadgill, P.L., Leonard, A.J., Shercliff, H.R., and Withers, P.J., “Friction stir welding of aluminium alloys”, International Materials Reviews,  Vol. 54, No. 2, (2009), 49–93.
5.     Nandan, R., DebRoy, T., and Bhadeshia, H.K.D.H., “Recent advances in friction-stir welding – Process, weldment structure and properties”, Progress in Materials Science,  Vol. 53, No. 6, (2008), 980–1023.
6.     Tanwar, P., and Kumar, V., “Friction Stir Welding: Review”, Science Technology & Engineering,  Vol. 3, No. 10, (2014), 172–176.
7.     Zhang, Y.N., Cao, X., Larose, S., and Wanjara, P., “Review of tools for friction stir welding and processing”, Canadian Metallurgical Quarterly,  Vol. 51, No. 3, (2012), 250–261.
8.     Lohwasser, D., and Chen, Z., Friction stir welding: From basics to applications, Elsevier, (2009).
9.     Schmidt, H., and Hattel, J., “A local model for the thermomechanical conditions in friction stir welding”, Modelling and Simulation in Materials Science and Engineering,  Vol. 13, No. 1, (2005), 77–93.
10.   Rajamanickam, N., Balusamy, V., Madhusudhanna Reddy, G., and Natarajan, K., “Effect of process parameters on thermal history and mechanical properties of friction stir welds”, Materials & Design,  Vol. 30, No. 7, (2009), 2726–2731.
11.   McNelley, T.R., Swaminathan, S., and Su, J.Q., “Recrystallization mechanisms during friction stir welding/processing of aluminum alloys”, Scripta Materialia,  Vol. 58, No. 5, (2008), 349–354.
12.   Murr, L.E., Flores, R.D., Flores, O.V., McClure, J.C., Liu, G., and Brown, D., “Friction-stir welding: microstructural characterization”, Materials Research Innovations,  Vol. 1, No. 4, (1998), 211–223.
13.   Colligan, K.J., “A conceptual model for the process variables related to heat generation in friction stir welding of aluminum”, Scripta Materialia,  Vol. 58, No. 5, (2008), 327–331.
14.   Kumar, K., and Kailas, S. V., “The role of friction stir welding tool on material flow and weld formation”, Materials Science and Engineering: A,  Vol. 485, No. 1–2, (2008), 367–374.
15.   Zhao, Y., Lin, S., Wu, L., and Qu, F., “The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy”, Materials Letters,  Vol. 59, No. 23, (2005), 2948–2952.
16.   Schmidt, H.B., and Hattel, J.H., “Thermal modelling of friction stir welding”, Scripta Materialia,  Vol. 58, No. 5, (2008), 332–337.
17.   Ulysse, P., “Three-dimensional modeling of the friction stir-welding process”, International Journal of Machine Tools and Manufacture,  Vol. 42, No. 14, (2002), 1549–1557.
18.   He, X., Gu, F., and Ball, A., “A review of numerical analysis of friction stir welding”, Progress in Materials Science,  Vol. 65, (2014), 1–66.
19.   Chen, C.M., and Kovacevic, R., “Finite element modeling of friction stir welding—thermal and thermomechanical analysis”, International Journal of Machine Tools and Manufacture,  Vol. 43, No. 13, (2003), 1319–1326.
20.   Buffa, G., Hua, J., Shivpuri, R., and Fratini, L., “Design of the friction stir welding tool using the continuum based FEM model”, Materials Science and Engineering: A,  Vol. 419, No. 1–2, (2006), 381–388.
21.   Zhang, H.W., Zhang, Z., and Chen, J.T., “3D modeling of material flow in friction stir welding under different process parameters”, Journal of Materials Processing Technology,  Vol. 183, No. 1, (2007), 62–70.
22.   Malik, V., Sanjeev, N.K., Hebbar, H.S., and Kailas, S. V., “Investigations on the Effect of Various Tool Pin Profiles in Friction Stir Welding Using Finite Element Simulations”, Procedia Engineering,  Vol. 97, (2014), 1060–1068.
23.   Al-Badour, F., Merah, N., Shuaib, A., and Bazoune, A., “Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes”, Journal of Materials Processing Technology,  Vol. 213, No. 8, (2013), 1433–1439.
24.   Su, H., Wu, C.S., Bachmann, M., and Rethmeier, M., “Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding”, Materials & Design,  Vol. 77, (2015), 114–125.
25.   Grujicic, M., He, T., Arakere, G., Yalavarthy, H. V, Yen, C.F., and Cheeseman, B.A., “Fully coupled thermomechanical finite element analysis of material evolution during friction-stir welding of AA5083”, Proceedings of the Institution of Mechanical Engineers: Journal of Engineering Manufacture, Part B,  Vol. 224, No. 4, (2010), 609–625.
26.   Chiumenti, M., Cervera, M., Agelet de Saracibar, C., and Dialami, N., “Numerical modeling of friction stir welding processes”, Computer Methods in Applied Mechanics and Engineering,  Vol. 254, (2013), 353–369.
27.   Nandan, R., Roy, G.G., and Debroy, T., “Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding”, Metallurgical and Materials Transactions A,  Vol. 37, No. 4, (2006), 1247–1259.
28.   Mohan, R., Rajesh, N.R., and Kumar, S.S., “Finite element modeling for maximum temperature in friction stir welding of AA 1100 and optimization of process parameter by Taguchi  Method”, IJRET: International Journal of Research in Engineering and Technology,  Vol. 3, No. 5, (2014), 728–733.
29.   Nourani, M., Milani, A.S., and Yannacopoulos, S., “Taguchi optimization of process parameters in friction stir welding of 6061 aluminum alloy: A review and case study”, Engineering ,  Vol. 3, No. 2, (2011), 144–155.
30.   Colegrove, P.A., and Shercliff, H.R., “3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile”, Journal of Materials Processing Technology,  Vol. 169, No. 2, (2005), 320–327.
31.   Atharifar, H., Lin, D., and Kovacevic, R., “Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding”, Journal of Materials Engineering and Performance,  Vol. 18, No. 4, (2009), 339–350.
32.   Hasan, A.F., Bennett, C.J., and Shipway, P.H., “A numerical comparison of the flow behaviour in Friction Stir Welding (FSW) using unworn and worn tool geometries”, Materials & Design,  Vol. 87, (2015), 1037–1046.
33.   Roy, B., Medhi, T., and Saha, S.C., “Material flow modeling in friction stir welding of AA6061-T6 alloy and study of the effect of process parameters”, World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering,  Vol. 9, No. 6, (2015), 658–666.
34.   Zhu, Y., Chen, G., Chen, Q., Zhang, G., and Shi, Q., “Simulation of material plastic flow driven by non-uniform friction force during friction stir welding and related defect prediction”, Materials & Design,  Vol. 108, (2016), 400–410.
35.   Chen, G., Shi, Q., and Zhang, S., “Recent Development and Applications of CFD Simulation for Friction Stir Welding”, In: TMS Annual Meeting & Exhibition, Springer, Cham, (2018), 113–118.
36.   Kim, S.-D., Yoon, J.Y., and Na, S.J., “A study on the characteristics of FSW tool shapes based on CFD analysis”, Welding in the World,  Vol. 61, No. 5, (2017), 915–926.
37.   Dialami, N., Chiumenti, M., Cervera, M., and Agelet de Saracibar, C., “Challenges in Thermo-mechanical Analysis of Friction Stir Welding Processes”, Archives of Computational Methods in Engineering,  Vol. 24, No. 1, (2017), 189–225.
38.   Gadakh, V.S., and Adepu, K., “Heat generation model for taper cylindrical pin profile in FSW”, Journal of Materials Research and Technology,  Vol. 2, No. 4, (2013), 370–375.
39.   Querin, J., and Schneider, J., “Developing an alternative heat indexing equation for FSW”, Welding Journal,  Vol. 91, (2012), 76–82.
40.   Xiao, Y., Zhan, H., Gu, Y., and Li, Q., “Modeling heat transfer during friction stir welding using a meshless particle method”, International Journal of Heat and Mass Transfer,  Vol. 104, (2017), 288–300.
41.   Dialami, N., Cervera, M., Chiumenti, M., Segatori, A., and Osikowicz, W., “Experimental Validation of an FSW Model with an Enhanced Friction Law: Application to a Threaded Cylindrical Pin Tool”, Metals,  Vol. 7, No. 11, (2017), 491–504.
42.   Avila, J.A., Giorjao, R.A.R., Rodriguez, J., Fonseca, E.B., and Ramirez, A.J., “Modeling of thermal cycles and microstructural analysis of pipeline steels processed by friction stir processing”, The International Journal of Advanced Manufacturing Technology,  Vol. 98, No. 9–12, (2018), 2611–2618.
43.   Unfried-Silgado, J., Torres-Ardila, A., Carrasco-García, J.C., and Rodríguez-Fernández, J., “Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy”, DYNA,  Vol. 84, No. 200, (2017), 202–208.
44.   Hamilton, R., MacKenzie, D., and Li, H., “Multi‐physics simulation of friction stir welding process”, Engineering Computations,  Vol. 27, No. 8, (2010), 967–985.
45.   Shi, Q.Y., Chen, G.Q., Wang, X.B., and Kang, X., “Numerical Analysis of Multi-Field Coupled Phenomena in Friction Stir Welding and Applications”, Materials Science Forum,  Vol. 783–786, (2014), 1794–1807.
46.   Arora, A., Nandan, R., Reynolds, A.P., and DebRoy, T., “Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments”, Scripta Materialia,  Vol. 60, No. 1, (2009), 13–16.
47.   Biswas, P., and Mandal, N.R., “Effect of Tool Geometries on Thermal History of FSW of AA1100”, Welding Journal,  Vol. 90, (2011), 129–135.
48.   Su, P., Gerlich, A., North, T.H., and Bendzsak, G.J., “Material flow during friction stir spot welding”, Science and Technology of Welding and Joining,  Vol. 11, No. 1, (2006), 61–71.
49.   Nandan, R., Roy, G.G., Lienert, T.J., and Debroy, T., “Three-dimensional heat and material flow during friction stir welding of mild steel”, Acta Materialia,  Vol. 55, No. 3, (2007), 883–895.
50.   Shi, H., McLaren, A.J., Sellars, C.M., Shahani, R., and Bolingbroke, R., “Constitutive equations for high temperature flow stress of aluminium alloys”, Materials Science and Technology,  Vol. 13, No. 3, (1997), 210–216.
51.   Das, B., Pal, S., and Bag, S., “Torque based defect detection and weld quality modelling in friction stir welding process”, Journal of Manufacturing Processes,  Vol. 27, (2017), 8–17.
52.   Song, M., and Kovacevic, R., “Numerical and experimental study of the heat transfer process in friction stir welding”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,  Vol. 217, No. 1, (2003), 73–85.