Application of the Avrami Theory for Wax Crystallisation of Synthetic Crude Oil


1 Chemical Engineering Department, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia

2 Centre for Advanced and Professional Education, Universiti Teknologi PETRONAS, Kuala Lumpur, Malaysia

3 Biomass Processing Laboratory, Centre for Biofuel and Biochemical Research, Institute of Sustainable Living, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia

4 Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Kelantan, Malaysia


Wax crystallisation and deposition from offshore reservoirs have been causing serious problems such as plugged pipelines and reduced production flow rates. This issue is receiving more attention from the researchers and for commercial applications due to the shift in trend from using offshore production facilities to pipelines utilization. The aim of this study is the implementation of the Avrami theory to comprehend the mechanism of wax crystallisation to reveal the morphology of wax crystal using gravimetric and differential scanning calorimetry (DSC) analyses. The experiment values obtained from the Avrami’s theory for both gravimetric and DSC techniques shows that the crystals were one-dimensional with rod-like structures. 


1.     Kjøraas, M., "Structure of paraffin wax deposits in subsea pipelines", Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics,  (2013).
2.     Singh, A., Lee, H.S., Singh, P. and Sarica, C., "Flow assurance: Validation of wax deposition models using field data from a subsea pipeline", in Offshore Technology Conference, Offshore Technology Conference, (2011).
3.     Lee, H.S., "Computational and rheological study of wax deposition and gelation in subsea pipelines, ProQuest,  (2008).
4.     Huang, Z., Lee, H.S., Senra, M. and Scott Fogler, H., "A fundamental model of wax deposition in subsea oil pipelines", AIChE Journal Vol. 57, No. 11, (2011), 2955-2964.
5.     Ribeiro, F.S., Souza Mendes, P.R. and Braga, S.L., "Obstruction of pipelines due to paraffin deposition during the flow of crude oils", International Journal of Heat and Mass Transfer Vol. 40, No. 18, (1997), 4319-4328.
6.     Creek, J., Lund, H.J., Brill, J.P. and Volk, M., "Wax deposition in single phase flow", Fluid Phase Equilibria Vol. 158, No., (1999), 801-811.
7.     Nasrifar, K. and Moshfeghian, M., "Multiphase equilibria of waxy systems with predictive equations of state and a solid solution model", Fluid Phase Equilibria Vol. 314, No., (2012), 60-68.
8.     Wu, Y., Ni, G., Yang, F., Li, C. and Dong, G., "Modified maleic anhydride co-polymers as pour-point depressants and their effects on waxy crude oil rheology", Energy & Fuels,  Vol. 26, No. 2, (2012), 995-1001.
9.     Alcazar-Vara, L.A. and Buenrostro-Gonzalez, E., Liquid-solid phase equilibria of paraffinic systems by dsc measurements.N: Elkordy, a.A. (ed.)., applications of calorimetry in a wide context–differential scanning calorimetry, iso-thermal titration calorimetry and microcalorimetry, intech, rijeka, croatia,pp. 253–276. 2013.
10.   Jafari Ansaroudi, H., Vafaie-Sefti, M., Masoudi, S., Behbahani, T.J. and Jafari, H., "Study of the morphology of wax crystals in the presence of ethylene-co-vinyl acetate copolymer", Petroleum Science and Technology Vol. 31, No. 6, (2013), 643-651.
11.   Chala, G.T., Sulaiman, S.A., Japper-Jaafar, A., Abdullah, W.A.K.W. and Mokhtar, M.M.M., "Gas void formation in statically cooled waxy crude oil", International Journal of Thermal Sciences,  Vol. 86, No., (2014), 41-47.
12.   Kok, M., "The effect of pour point depressant on the flow behavior of crude oils", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,  Vol. 36, No. 2, (2014), 167-172.
13.   Zhang, F., Ouyang, J., Feng, X., Zhang, H. and Xu, L., "Paraffin deposition mechanism and paraffin inhibition technology for high-carbon paraffin crude oil from the kazakhstan pk oilfield", Petroleum Science and Technology Vol. 32, No. 4, (2014), 488-496.
14.   Zhang, H., "Study on parrifine removal additive of high wax crude oil", in Advanced Materials Research, Trans Tech Publications Vol. 960, No. Issue, (2014), 11-13.
15.   Quan, Q., Gong, J., Wang, W. and Wang, P., "The influence of operating temperatures on wax deposition during cold flow and hot flow of crude oil", Petroleum Science and Technology Vol. 33, No. 3, (2015), 272-277.
16.   Vafaie-Sefti, M., Mousavi-Dehghani, S. and Bahar, M.M.-Z., "Compositional modeling of wax formation in petroleum mixtures", International Journal of Engineering, Transactions A: Basics, Vol. 14, No. 4, (2001), 303-312.
17.   Kané, M., Djabourov, M., Volle, J.-L., Lechaire, J.-P. and Frebourg, G., "Morphology of paraffin crystals in waxy crude oils cooled in quiescent conditions and under flow", Fuel,  Vol. 82, No. 2, (2003), 127-135.
18.   Askari, S., "Oil reservoirs classification using fuzzy clustering", International Journal of Engineering, Transactions C: Asppects, Vol. 30, No. 9, (2017), 1391-1400.
19.   Hammami, A. and Mehrotra, A.K., "Non-isothermal crystallization kinetics of n-paraffins with chain lengths between thirty and fifty", Thermochimica Acta,  Vol. 211, No. 0, (1992), 137-153.
20.   Svetlichnyy, D., Didukh, A., Aldyarov, A., Kim, D., Nawrocki, M. and Baktygali, A., "Study of heat treatment and cooling rate of oil mixtures transported by “kumkol-karakoin-barsengir-atasu” pipeline", Electronic Scientific Journal “Oil and Gas Business,  Vol., No. 2, (2011), 427-437.
21.   Ekweribe, C.K., Civan, F., Lee, H.S. and Singh, P., "Interim report on pressure effect on waxy-crude pipeline-restart conditions investigated by a model system", SPE Projects Facilities & Construction,  Vol. 4, No. 03, (2009), 61-74.
22.   Zougari, M.I. and Sopkow, T., "Introduction to crude oil wax crystallization kinetics: Process modeling", Industrial & Engineering Chemistry Research,  Vol. 46, No. 4, (2007), 1360-1368.
23.   Primicerio, M., Wax segregation in oils: A multiscale problem, in Progress in industrial mathematics at ecmi 2008. 2010, Springer.43-67.
24.   Lopes-da-Silva, J. and Coutinho, J.A., "Analysis of the isothermal structure development in waxy crude oils under quiescent conditions", Energy & Fuels,  Vol. 21, No. 6, (2007), 3612-3617.
25.   Pal, S. and Nandi, A.K., "Cocrystallization mechanism of poly (3-alkyl thiophenes) with different alkyl chain length", Polymer,  Vol. 46, No. 19, (2005), 8321-8330.
26.   Caze, C., Devaux, E., Crespy, A. and Cavrot, J., "A new method to determine the avrami exponent by dsc studies of non-
isothermal crystallization from the molten state", Polymer,  Vol. 38, No. 3, (1997), 497-502.
27.   Ismail, L., Westacott, R.E. and Ni, X., "On the effect of wax content on paraffin wax deposition in a batch oscillatory baffled tube apparatus", Chemical Engineering Journal Vol. 137, No. 2, (2008), 205-213.
28.   Singh, P., Venkatesan, R., Fogler, H.S. and Nagarajan, N., "Formation and aging of incipient thin film wax-oil gels", AIChE Journal Vol. 46, No. 5, (2000), 1059-1074.
29.   Avrami, M., "Kinetics of phase change. I general theory", The Journal of Chemical Physics,  Vol. 7, No. 12, (1939), 1103-1112.
30.   Sperling, L.H., "Kinetics of crystallisations, in: L.H. Sperling (ed.), introduction to physical polymer science", John Wiley and Sons,  (1986), 271-291.
31.   Cazé, C., Devaux, E., Crespy, A. and Cavrot, J.P., "A new method to determine the avrami exponent by d.S.C. Studies of non-isothermal crystallization from the molten state", Polymer,  Vol. 38, No. 3, (1997), 497-502.
32.   Lu, M., Shim, M. and Kim, S., "Curing behavior of an unsaturated polyester system analyzed by avrami equation", Thermochimica Acta,  Vol. 323, No. 1, (1998), 37-42.
33.   Avrami, M., "Kinetics of phase change. Ii transformation‐time relations for random distribution of nuclei", The Journal of Chemical Physics,  Vol. 8, No. 2, (1940), 212-224.
34.   Hay, J., "Application of the modified avrami equations to polymer crystallisation kinetics", Polymer International Vol. 3, No. 2, (1971), 74-82.
35.   Campos, R., Litwinenko, J. and Marangoni, A., "Fractionation of milk fat by short-path distillation", Journal of Dairy Science Vol. 86, No. 3, (2003), 735-745.
36.   Sharples, A., " Overall kinetics of crystallisation, in: A. Sharples (ed.), introduction to polymer crystallisation", Edward Arnold Ltd., , London,  Vol., No., (1966), 44-59.
37.   Chen, J., Zhang, J. and Li, H., "Determining the wax content of crude oils by using differential scanning calorimetry", Thermochimica Acta,  Vol. 410, No. 1, (2004), 23-26.
38.   Alcazar-Vara, L.A. and Buenrostro-Gonzalez, E., "Experimental study of the influence of solvent and asphaltenes on liquid–solid phase behavior of paraffinic model systems by using dsc and ft-ir techniques", Journal of Thermal Analysis and Calorimetry Vol. 107, No. 3, (2012), 1321-1329.
39.   Lide, D.R. and Milne, G.W., "Handbook of data on common organic compounds, CRC press,  Vol. 3,  (1995).
40.   Weast, R.C., Astle, M.J. and Beyer, W.H., "Crc handbook of chemistry and physics, CRC press Boca Raton, FL,  Vol. 69,  (1988).
41.   Weast, R.C. and Grasselli, J.G., "Handbook of data on organic compounds",  Vol., No., (1989).
42.   Pauling, L., "General chemistry, Courier Corporation,  (1988).
43.   Hosseinipour, A., Sabil, K.M., Arya Ekaputra, A., Japper, A.B. and Ismail, L.B., "The impact of the composition of the crude oils on the wax crystallization", in Applied Mechanics and Materials, Trans Tech Publications. Vol. 625, No. Issue, (2014), 196-200.
44.   Roenningsen, H.P., Bjoerndal, B., Baltzer Hansen, A. and Batsberg Pedersen, W., "Wax precipitation from north sea crude oils: 1. Crystallization and dissolution temperatures, and newtonian and non-newtonian flow properties", Energy & Fuels,  Vol. 5, No. 6, (1991), 895-908.