Kinetic Modeling of Enzymatic Hydrolysis of Pretreated Sorghum Bicolor and Rice Husk


1 Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box 484, Babol, Iran

2 Department of Chemical Engineering, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran


In this study, the hydrolysis of pretreated sorghum stem and rice husk was investigated at various initial enzyme concentrations and substrate loadings. The slowdown in enzymatic hydrolysis of lignocellulosic materials with conversion has often been attributed to decreasing the activity of enzyme. A kinetic model was developed and expressed mathematically based on enzyme deactivation for enzymatic hydrolysis of lignocellulosic materials. The decline in activation of the adsorbed enzyme is represented by a second order reaction. The models were used to fit experimental data of sorghum stem and rice husk hydrolysis. The models basic parameters which can explain the effects observed experimentally were determined and discussed. The model performed well in predicting hydrolysis trends at experimental condition.


1.     Chauve, M., Mathis, H., Huc, D., Casanave, D., Monot, F. and Ferreira, N.L., "Comparative kinetic analysis of two fungal β-glucosidases", Biotechnology for Biofuels,  Vol. 3, No. 1, (2010), 3-10.
2.     Bansal, P., Hall, M., Realff, M.J., Lee, J.H. and Bommarius, A.S., "Modeling cellulase kinetics on lignocellulosic substrates", Biotechnology Advances,  Vol. 27, No. 6, (2009), 833-848.
3.     Najafpour, G., Ideris, A., Salmanpour, S. and Norouzi, M., "Acid hydrolysis of pretreated palm oil lignocellulosic wastes", IJE Transactions,  Vol. 20, No. 2, (2007), 147-156.
4.     Gan, Q., Allen, S. and Taylor, G., "Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modelling", Process Biochemistry,  Vol. 38, No. 7, (2003), 1003-1018.
5.     Zhou, J., Wang, Y.-H., Chu, J., Luo, L.-Z., Zhuang, Y.-P. and Zhang, S.-L., "Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments", Bioresource Technology,  Vol. 100, No. 2, (2009), 819-825.
6.     Kim, S. and Holtzapple, M.T., "Effect of structural features on enzyme digestibility of corn stover", Bioresource Technology,  Vol. 97, No. 4, (2006), 583-591.
7.     Berlin, A., Maximenko, V., Gilkes, N. and Saddler, J., "Optimization of enzyme complexes for lignocellulose hydrolysis", Biotechnology and Bioengineering,  Vol. 97, No. 2, (2007), 287-296.
8.     P O'Dwyer, J., Zhu, L., Granda, C.B., Chang, V.S. and Holtzapple, M.T., "Neural network prediction of biomass digestibility based on structural features", Biotechnology Progress,  Vol. 24, No. 2, (2008), 283-292.
9.     Zhang, Y., Xu, J.-L., Xu, H.-J., Yuan, Z.-H. and Guo, Y., "Cellulase deactivation based kinetic modeling of enzymatic hydrolysis of steam-exploded wheat straw", Bioresource Technology,  Vol. 101, No. 21, (2010), 8261-8266.
10.   Wei, G.-Y., Lee, Y.-J., Kim, Y.-J., Jin, I.-H., Lee, J.-H., Chung, C.-H. and Lee, J.-W., "Kinetic study on the pretreatment and enzymatic saccharification of rice hull for the production of fermentable sugars", Applied Biochemistry and Biotechnology,  Vol. 162, No. 5, (2010), 1471-1482.
11.   Carrillo, F., Lis, M., Colom, X., López-Mesas, M. and Valldeperas, J., "Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: Kinetic study", Process Biochemistry,  Vol. 40, No. 10, (2005), 3360-3364.
12.   Chrastil, J., "Enzymic product formation curves with the normal or diffusion limited reaction mechanism and in the presence of substrate receptors", International Journal of Biochemistry,  Vol. 20, No. 7, (1988), 683-693.
13.   Kadam, K.L., Rydholm, E.C. and McMillan, J.D., "Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass", Biotechnology Progress,  Vol. 20, No. 3, (2004), 698-705.
14.   Peri, S., Karra, S., Lee, Y. and Karim, M.N., "Modeling intrinsic kinetics of enzymatic cellulose hydrolysis", Biotechnology Progress,  Vol. 23, No. 3, (2007), 626-637.
15.   Morales-Rodriguez, R., Gernaey, K.V., Meyer, A.S. and Sin, G., "A mathematical model for simultaneous saccharification and co-fermentation (sscf) of c6 and c5 sugars", Chinese Journal of Chemical Engineering,  Vol. 19, No. 2, (2011), 185-191.
16.   Shen, J. and Agblevor, F.A., "Kinetics of enzymatic hydrolysis of steam-exploded cotton gin waste", Chemical Engineering Communications,  Vol. 195, No. 9, (2008), 1107-1121.
17.   Banerjee, S., Sen, R., Pandey, R., Chakrabarti, T., Satpute, D., Giri, B.S. and Mudliar, S., "Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization", Biomass and Bioenergy,  Vol. 33, No. 12, (2009), 1680-1686.
18.   Ayoola, A., Adeeyo, O., Efeovbokhan, V.E. and Ajileye, O., "A comparative study on glucose production from sorghum bicolor and manihot esculenta species in nigeria", International Journal of Science and Technology,  Vol. 2, No. 6, (2012), 353-357.
19.   Mehmood, S., Gulfraz, M., Rana, N.F., Ahmad, A., Ahring, B.K., Minhas, N. and Malik, M.F., "Ethanol production from sorghum bicolor using both separate and simultaneous saccharification and fermentation in batch and fed batch systems", African Journal of Biotechnology,  Vol. 8, No. 12, (2009), 152-160.
20.   Dahlberg, J., Berenji, J., Sikora, V. and Latkovic, D., "Assessing sorghum [sorghum bicolor (l) moench] germplasm for new traits: Food, fuels & unique uses", Maydica,  Vol. 56, No. 1750, (2011), 85-92.
21.   Theuretzbacher, F., Bauer, A., Lizasoain, J., Becker, M., Rosenau, T., Potthast, A., Friedl, A., Piringer, G. and Gronauer, A., "Potential of different sorghum bicolor (l. Moench) varieties for combined ethanol and biogas production in the pannonian climate of austria", Energy,  Vol. 55, (2013), 107-113.
22.   Nikzad, M., Movagharnejad, K., Najafpour, G. and Talebnia, F., "Comparative studies on the effect of pretreatment of rice husk on enzymatic digestibility and bioethanol production", International Journal of Engineering,  Vol. 26, (2012), 455-464.
23.   Riazi, S., Rahimnejad, M. and Najafpour, G., "Hydrolysis of sorghum (broomcorn) in diluted hydrochloric acid", International Journal of Engineering-Transactions B: Applications,  Vol. 28, No. 11, (2015), 1543.-1550
24.   McIntosh, S. and Vancov, T., "Enhanced enzyme saccharification of sorghum bicolor straw using dilute alkali pretreatment", Bioresource Technology,  Vol. 101, No. 17, (2010), 6718-6727.
25.   Ang, T.N., Ngoh, G.C., Chua, A.S.M. and Lee, M.G., "Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses", Biotechnology for Biofuels,  Vol. 5., No. 1, (2012), 67-75.
26.   Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D., "Determination of structural carbohydrates and lignin in biomass", National Renewable Energy Laboratory Technical Report NREL/, (2011).
27.   Adney, B. and Baker, J., "Measurement of cellulase activities", Laboratory Analytical Procedure,  Vol. 6, (1996), 1996.-2003
28.   Nikzad, M., Movagharnejad, K., Talebnia, F., Aghaiy, Z. and Mighani, M., "Modeling of alkali pretreatment of rice husk using response surface methodology and artificial neural network", Chemical Engineering Communications,  Vol. 202, No. 6, (2015), 728-738.
29.   Nikzad, M., Movagharnejad, K., Talebnia, F., Najafpour, G. and Hosein, F.G.A., "A study on alkali pretreatment conditions of sorghum stem for maximum sugar recovery using statistical approach", Chemical Industry and Chemical Engineering Quarterly,  Vol. 20, No. 2, (2014), 261-271.
30.   Shin, D., Yoo, A., Kim, S.W. and Yang, D.R., "Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with brettanomyces custersii", Journal of Microbiology and Biotechnology,  Vol. 16, No. 9, (2006), 1355-1361.
31.   Khodaverdi, M., Jeihanipour, A., Karimi, K. and Taherzadeh, M.J., "Kinetic modeling of rapid enzymatic hydrolysis of crystalline cellulose after pretreatment by nmmo", Journal of Industrial Microbiology & Biotechnology,  Vol. 39, No. 3, (2012), 429-438.