Investigation of Charged Particles Radiation Moving in a Homogeneous Dispersive Medium (TECHNICAL NOTE)


1 Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois, USA

2 Department of Physics, Arsanjan Branch, Islamic Azad University, Arsanjan, Fars, Iran

3 Mechanical Engineering Department, Universiti Teknologi PETROPNAS, Malaysia

4 Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Selangor, Malaysia

5 Center for Advanced Research in Education (CIAE), University of Chile, Santiago, Chile

6 Fundamental & Applied Sciences Department, Universiti Teknologi PETROPNAS, Malaysia


In this work, we use Drude-Lorents model description to study the radiation of a charged particles moving in a homogeneous dispersive medium. A suitable quantized electromagnetic field for such medium is utilized to obtain proper equations for energy loss of the particle per unit length. The energy loss is separately calculated for transverse and longitudinal components of the filed operators. The calculations show that the longitudinal component of the field operators contributes in electron radiation, when dielectric function is exceedingly dependent on the frequency. It is also shown that when the dispersion is not included, the obtained equations are in a good agreement with previous results. For negligible dispersion, the contribution of the field’s longitudinal component tends to zero and at the end the results are in agreement with Ginsberg’s calculations. This calculation can reveal a development for the fields’ quantization for permeable dielectric background medium.


1.     Cerenkov, P., "Visible radiation produced by electrons moving in a medium with velocities exceeding that of light",Physical Review, Vol. 52, No. 4, (1937).
2.     Mirzoyan, R.,"Brief history of ground-based very high energy gamma-ray astrophysics with atmospheric air Cherenkov telescopes", Astroparticle Physics, Vol. 53, (2014), 91-99.
3.     Engelfried, J., "Cherenkov light imaging—Fundamentals and recent development", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 639, No. 1, (2011), 1-6.
4.     Ghasemi, M., Choudhury, P. K., Dehzangi, A., "Nanoengineered thin films of copper for the optical monitoring of urine – a comparative study of the helical and columnar nanostructures", Journal of Electromagnetic Waves and Applications, Vol. 29, (2015), No.17, 2321-2329.
5.     Dehzangi, A., Larki, F., Naseri, M. G., Navasery, M., Majlis, B. Y., Razip Wee, M. F., Halimah, M. K., Islam , M. S., Md Ali, S. H., Saion E., "Fabrication and simulation of single crystal p-type Si nanowire using SOI technology. Applied Surface Science, Vol. 334, (2015), 87-93.
6.     Dehzangi, A., Larki F., Md Ali, S. H., Hutagalung, S. D., Islam, M. S., Hamidon, M. N., Menon, S., Jalar, A., Hassan, J., Majlis, B. Y., "Study of the side gate junctionless transistor in accumulation region", Microelectronics International, Vol. 33, No. 2, (2016), 61-67.
7.     De Abajo, A. J. G., Pattantyus-Abraham, A. G., Zabala, N., Rivacoba, A., Wolf, M. O., Echenique, P. M, "Cherenkov effect as a probe of photonic nanostructures" Physical Review Letters, Vol. 91, No. 14, (2003), 143902/1-143902/4.
8.     Saito, H., Kurata, H., "Formation of a hybrid plasmonic waveguide mode probed by dispersion measurement". Journal of Applied Physics, Vol. 11, No. 13, (2015).
9.     Lohrmann, C., Zhang, H., Thorek, D. L., Desai, P., Zanzonico, P. B., O’Donoghue, J., Irwin, C. P., Reiner, T., Grimm, J., Weber, W. A," Cerenkov Luminescence Imaging for Radiation Dose Calculation of a 90Y-Labeled Gastrin-Releasing Peptide Receptor Antagonist", Journal of Nuclear Medicine, Vol. 65, No. 5, (2015), 805-811.
10.   Song, T., Liu, X., Qu, Y., Liu, H., Bao, C., Leng, C., Hu, Z.,
Wang, K., Tian, J, "A Novel Endoscopic Cerenkov Luminescence Imaging System for Intraoperative Surgical Navigation", Molecular Imaging, Vol. 14, (2015), 443-49.
11.   Wahlstrand, J. K., Merlin, R., "Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons", Physical Review B - Condensed Matter and Materials Physics, Vol. 68, No. 5, (2003), 543011-5430112.
12.   Navasery, M., Halim, S. A., Dehzangi, A., Soltani, N., Bahmanrokh, G., Kamalianfar, A., Pan, K. Y., Chang, S. C., Chen, S. K., Lim, K. P., Kechik, M. A, "Electrical properties and conduction mechanisms in La2/3Ca1/3MnO3 thin films prepared by pulsed laser deposition on different substrates". Applied Physics A, Vol. 116, No. 4, (2014), 1661-1668.
13.   Soltani, N., Dehzangi, A., Saion, E., Majlis, B. Y., Zare, M. R., Kharazmi, A., Navasery, M., "Influence of exposure time on structural, optical and electrical properties of zinc sulphide nanoparticles synthesized by microwave technique" Chalcogenide Letters, Vol. 10, No. 1, (2013), 27-37.
14.   Hoang, A. M., Dehzangi, A., Adhikary, S., Razeghi, M., "High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices". Scientific Reports, Vol. 6, (2016).
15.   Soltani, N., Dehzangi, A., Kharazmi, A., Saion, E., Yunus, W., Majlis, B. Y., Zare, M. R., Gharibshahi, E., Khalilzadeh, N., "Structural, optical and electrical properties of ZnS nanoparticles affecting by organic coating", Chalcogenide Letters, Vol. 11, No. 2, (2014), 79-90.
16.   Shaffer, T. M., Pratt, E. C., Grimm, J., "Utilizing the power of Cerenkov light with nanotechnology", Nature Nanotechnology, Vol. 12, No. 2, (2017), 106-117.
17.   Tamm, I., Frank, I., "Coherent radiation of fast electrons in a medium", Dokl. Akad. Nauk SSSR, (1937).
18.   Pardy, M., "The two-dimensional Vavilov–Cerenkov radiation in LED", Results in Physics, Vol. 5 (2015), 69-71.
19.   Matloob, R., Ghaffari, A., "Cerenkov radiation in a causal permeable medium", Physical Review A, Vol. 70, No. 5, (2004).
20.   Bohm, D., "Quantum Theory",New York: Dover Publications, (2012).
21.   Ginzburg, V. L., "A Scientific Autobiography—an Attempt", The Physics of a Lifetime., Springer, (2001), 309-347.
22.   Dung, H. T., Buhmann, S. Y., Knoll, L., Welsch, D. G., Scheel, S. Kastel, J., "Electromagnetic-field quantization and spontaneous decay in left-handed media", Physical Review A - Atomic, Molecular, and Optical Physics, Vol. 68, No. 4, (2003), 043816/1-043816/15.
23.   Matloob, R., "Electromagnetic field quantization in a linear isotropic permeable dielectric medium", Physical Review A - Atomic, Molecular, and Optical Physics, Vol. 70, No. 2, (2004), 022108-1-022108-9.
24.   Hehl, F. W., Obukhov, Y. N., "Foundations of classical electrodynamics: Charge, flux, and metric", Springer Science & Business Media,Vol. 33, (2012).
25.   Greiner, W., "Classical electrodynamics",Springer Science & Business Media,(2012).
26.   Matloob, R., "Electromagnetic field quantization in an absorbing mediu", Physical Review A, Vol. 60, No. 1, (1999).
27.   Crosse, J. A., Fuchs S., Buhmann S. Y., "Electromagnetic Green's function for layered topological insulators", Physical Review A, Vol. 96, No. 2, (2015).
28.   Ginzburg, V. L., "Radiation by uniformly moving sources (Vavilov-Cherenkov effect, transition radiation, and other phenomena)", Physics-Uspekhi, Vol. 39, No. 10, (1996), 973-982.
29.   Reitz, J. R., Milford F. J., Christy R. W., "Foundations of electromagnetic theory", Addison-Wesley Publishing Company, Boston, (2008).
30.   Harris, E. G., "A pedestrian approach to quantum field theory", Courier Corporation, Massachusetts, (2014).
31.           Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., "Plasma Electrodynamics: Linear Theory", Vol. 68, Elsevier, (2013).