Synthesis and Characterization of Anatase-coated Multiwall Carbon Nanotube for Improvement of Photocatalytic Activity


Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran


Sol-gel technique was used to coat multiwall carbon nanotubes (MWCNTs) with anatase titania to increasing the surface area and improve the photocatalytic activity of TiO2. Room temperature ballistic conduct of MWCNT combined with semiconducting behavior of anatase brought about a photocatalytic improvement of ~37 % with respect to the highest methyl orange decolorization flair. For characterization and photocatalytic efficiency determination, X-ray diffraction (XRD), field emission (FE) scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS) and ultraviolet visible (UV-vis) spectroscopy were rehearsed. Attachment of anatase nanoparticles onto 30 wt % functionalized CNTs resulted in 99.72% methyl orange decolorization by 160 min irradiation with 8 W ultraviolet lamp. This value was fourfold greater than pure TiO2 nanoparticles and much greater than the values reported in the literature. This improvement was attributed to larger surface area, lower charge recombination and superior crystal structure and stimulated visible-light shifting due to presence of Ti ̶ O ̶ C bond.


1.     Fujishima, A., "Electrochemical photolysis of water at a semiconductor electrode", Nature,  Vol. 238, (1972), 37-38.
2.     Bianchi, C.L., Pirola, C., Galli, F., Cerrato, G., Morandi, S. and Capucci, V., "Pigmentary TiO2: A challenge for its use as photocatalyst in nox air purification", Chemical Engineering Journal,  Vol. 261, (2015), 76-82.
3.     Andreozzi, R., Caprio, V., Insola, A. and Marotta, R., "Advanced oxidation processes (AOP) for water purification and recovery", Catalysis Today,  Vol. 53, No. 1, (1999), 51-59.
4.     Nischk, M., Mazierski, P., Gazda, M. and Zaleska, A., "Ordered TiO2 nanotubes: The effect of preparation parameters on the photocatalytic activity in air purification process", Applied Catalysis B: Environmental,  Vol. 144, (2014), 674-685.
5.     Wang, G., Chen, S., Yu, H. and Quan, X., "Integration of membrane filtration and photoelectrocatalysis using a TiO2 /carbon/ Al2O3 membrane for enhanced water treatment", Journal of Hazardous Materials,  Vol. 299, (2015), 27-34.
6.     Xie, T., Sullivan, N., Steffens, K., Wen, B., Liu, G., Debnath, R., Davydov, A., Gomez, R. and Motayed, A., "Uv-assisted room-temperature chemiresistive NO2 sensor based on TiO2 thin film", Journal of Alloys and Compounds,  Vol. 653, (2015), 255-259.
7.     Gonullu, Y., Haidry, A.A. and Saruhan, B., "Nanotubular cr-doped TiO2 for use as high-temperature NO2 gas sensor", Sensors and Actuators B: Chemical,  Vol. 217, (2015), 78-87.
8.     Gong, J., Li, Y., Hu, Z., Zhou, Z. and Deng, Y., "Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers", The Journal of Physical Chemistry C,  Vol. 114, No. 21, (2010), 9970-9974.
9.     Yue, W., Pan, Y., Xie, Z., Yang, X., Hu, L., Hong, L., Tong, Y. and Cheng, Q., "Different depositing amount of cuins 2 on TiO2 nanoarrays for polymer/cuins 2– TiO2 solar cells", Materials Science in Semiconductor Processing,  Vol. 40, (2015), 257-261.
10.   Shogh, S., Mohammadpour, R. and Taghavinia, N., "Improved photovoltaic performance of nanostructured solar cells by neodymium-doped TiO2 photoelectrode", Materials Letters,  Vol. 159, (2015), 273-275.
11.   Yan, Z., Yu, X., Zhang, Y., Jia, H., Sun, Z. and Du, P., "Enhanced visible light-driven hydrogen production from water by a noble-metal-free system containing organic dye-sensitized titanium dioxide loaded with nickel hydroxide as the cocatalyst", Applied Catalysis B: Environmental,  Vol. 160, (2014), 173-178.
12.   Caballero, L., Whitehead, K., Allen, N. and Verran, J., "Inactivation of escherichia coli on immobilized TiO2 using fluorescent light", Journal of Photochemistry and Photobiology A: Chemistry,  Vol. 202, No. 2, (2009), 92-98.
13.   Banerjee, S., Dionysiou, D.D. and Pillai, S.C., "Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis", Applied Catalysis B: Environmental,  Vol. 176, (2015), 396-428.
14.   Pinho, L., Rojas, M. and Mosquera, M.J., "Ag– SiO2– TiO2 nanocomposite coatings with enhanced photoactivity for self-cleaning application on building materials", Applied Catalysis B: Environmental,  Vol. 178, No., (2015), 144-154.
15.   Anandan, S., Narasinga Rao, T., Sathish, M., Rangappa, D., Honma, I. and Miyauchi, M., "Superhydrophilic graphene-loaded tio2 thin film for self-cleaning applications", ACS Applied Materials & Interfaces,  Vol. 5, No. 1, (2012), 207-212.
16.   Czech, B., Buda, W., Pasieczna-Patkowska, S. and Oleszczuk, P., "Mwcnt– TiO2–SiO2 nanocomposites possessing the photocatalytic activity in uva and uvc", Applied Catalysis B: Environmental,  Vol. 162, No., (2015), 564-572.
17.   Im, J.S., Yun, S.-M. and Lee, Y.-S., "Investigation of multielemental catalysts based on decreasing the band gap of titania for enhanced visible light photocatalysis", Journal of Colloid and Interface Science,  Vol. 336, No. 1, (2009), 183-188.
18.   Elahifard, M.R., Rahimnejad, S., Haghighi, S. and Gholami, M.R., "Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria", Journal of the American Chemical Society,  Vol. 129, No. 31, (2007), 9552-9553.
19.   Hu, C., Lan, Y., Qu, J., Hu, X. and Wang, A., " Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria", The Journal of Physical Chemistry B,  Vol. 110, No. 9, (2006), 4066-4072.
20.   Liu, Q., Ding, J., Mante, F.K., Wunder, S.L. and Baran, G.R., "The role of surface functional groups in calcium phosphate nucleation on titanium foil: A self-assembled monolayer technique", Biomaterials,  Vol. 23, No. 15, (2002), 3103-3111.
21.   Linsebigler, A.L., Lu, G. and Yates, J.T., "Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results", Chemical Reviews,  Vol. 95, No. 3, (1995), 735-758.
22.   Ullah, K., Meng, Z.-D., Ye, S., Zhu, L. and Oh, W.-C., "Synthesis and characterization of novel PbS–graphene/ TiO2 composite with enhanced photocatalytic activity", Journal of Industrial and Engineering Chemistry,  Vol. 20, No. 3, (2014), 1035-1042.
23.   Yao, Y., Li, G., Ciston, S., Lueptow, R.M. and Gray, K.A., "Photoreactive TiO2/carbon nanotube composites: Synthesis and reactivity", Environmental Science & Technology,  Vol. 42, No. 13, (2008), 4952-4957.
24.   Li, G.-S., Zhang, D.-Q. and Yu, J.C., "Visible-light photocatalyst: Cds quantum dots embedded mesoporous TiO2", Environmental Science & Technology,  Vol. 43, No. 18, (2009), 7079-7085.
25.   Sajjad, A.K.L., Shamaila, S., Tian, B., Chen, F. and Zhang, J., "Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst", Journal of Hazardous Materials,  Vol. 177, No. 1, (2010), 781-791.
26.   Lv, K., Li, J., Qing, X., Li, W. and Chen, Q., "Synthesis and photo-degradation application of WO3/TiO2 hollow spheres", Journal of Hazardous Materials,  Vol. 189, No. 1, (2011), 329-335.
27.   Ullah, K., Ye, S., Jo, S.-B., Zhu, L., Cho, K.-Y. and Oh, W.-C., "Optical and photocatalytic properties of novel heterogeneous PtSe2–graphene/TiO2 nanocomposites synthesized via ultrasonic assisted techniques", Ultrasonics Sonochemistry,  Vol. 21, No. 5, (2014), 1849-1857.
28.   Zhang, L., Yu, J.C., Yip, H.Y., Li, Q., Kwong, K.W., Xu, A.-W. and Wong, P.K., "Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities", Langmuir,  Vol. 19, No. 24, (2003), 10372-10380.
29.   Vamathevan, V., Amal, R., Beydoun, D., Low, G. and McEvoy, S., "Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles", Journal of Photochemistry and Photobiology A: Chemistry,  Vol. 148, No. 1, (2002), 233-245.
30.   Liu, S. and Chen, Y., "Enhanced photocatalytic activity of tio 2 powders doped by Fe unevenly", Catalysis Communications,  Vol. 10, No. 6, (2009), 894-899.
31.   Nitoi, I., Oancea, P., Raileanu, M., Crisan, M., Constantin, L. and Cristea, I., "Uv–vis photocatalytic degradation of nitrobenzene from water using heavy metal doped titania", Journal of Industrial and Engineering Chemistry,  Vol. 21, No., (2015), 677-682.
32.   Choi, W., Termin, A. and Hoffmann, M.R., "The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics", Journal of Physical Chemistry,  Vol. 98, No. 51, (1994), 13669-13679.
33.   Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., "Visible-light photocatalysis in nitrogen-doped titanium oxides", science,  Vol. 293, No. 5528, (2001), 269-271.
34.   Lin, X., Fu, D., Hao, L. and Ding, Z., "Synthesis and enhanced visible-light responsive of c, n, s-tridoped TiO2 hollow spheres", Journal of Environmental Sciences,  Vol. 25, No. 10, (2013), 2150-2156.
35.   Herrmann, J.-M., "Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants", Catalysis Today,  Vol. 53, No. 1, (1999), 115-129.
36.   Cong, Y., Li, X., Qin, Y., Dong, Z., Yuan, G., Cui, Z. and Lai, X., "Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity", Applied Catalysis B: Environmental,  Vol. 107, No. 1, (2011), 128-134.
37.   Shaari,   N.,   Tan,  S.   and   Mohamed,  A.,  "  Synthesis   and characterization of cnt/ce- TiO2 nanocomposite for phenol degradation", Journal of Rare Earths,  Vol. 30, No. 7, (2012), 651-658.
38.   Wang, W., Serp, P., Kalck, P. and Faria, J.L., "Visible light photodegradation of phenol on mwnt- TiO2 composite catalysts prepared by a modified sol–gel method", Journal of Molecular Catalysis A: Chemical,  Vol. 235, No. 1, (2005), 194-199.
39.   Silva, C.G. and Faria, J.L., "Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix", Applied Catalysis B: Environmental,  Vol. 101, No. 1, (2010), 81-89.
40.   Yen, C.-Y., Lin, Y.-F., Hung, C.-H., Tseng, Y.-H., Ma, C.-C.M., Chang, M.-C. and Shao, H., "The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/ TiO2nanocomposites", Nanotechnology,  Vol. 19, No. 4, (2008), 045604.
41.   Song, Z., Hrbek, J. and Osgood, R., "Formation of TiO2 nanoparticles by reactive-layer-assisted deposition and characterization by xps and stm", Nano Letters,  Vol. 5, No. 7, (2005), 1327-1332.
42.   Akhavan, O., Abdolahad, M., Abdi, Y. and Mohajerzadeh, S., "Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. Coli in visible light irradiation", Carbon,  Vol. 47, No. 14, (2009), 3280-3287.
43.   Yang, K., Dai, Y., Huang, B. and Whangbo, M.-H., "Density functional characterization of the visible-light absorption in substitutional C-Anion- and C-Cation-Doped TiO2", The Journal of Physical Chemistry C,  Vol. 113, No. 6, (2009), 2624-2629.
44.   Lim, M., Zhou, Y., Wood, B., Guo, Y., Wang, L., Rudolph, V. and Lu, G., "Fluorine and carbon codoped macroporous titania microspheres: Highly effective photocatalyst for the destruction of airborne styrene under visible light", The Journal of Physical Chemistry C,  Vol. 112, No. 49, (2008), 19655-19661.
45.   Woan, K., Pyrgiotakis, G. and Sigmund, W., "Photocatalytic carbon‐nanotube– TiO2 composites", Advanced Materials,  Vol. 21, No. 21, (2009), 2233-2239.
46.   Chen, Y., Crittenden, J.C., Hackney, S., Sutter, L. and Hand, D.W., "Preparation of a novel TiO2-based p− n junction nanotube photocatalyst", Environmental Science & Technology,  Vol. 39, No. 5, (2005), 1201-1208.