Second Order Sliding Mode Control of Three Phase Neutral Point Clamped Inverter in Stationary Frame

Document Type : Original Article

Authors

1 Islamic Azad Univesrity, Science and Technology Branch, Tehran Iran

2 Electrical Engineering Department, University of Tehran, Tehran, Iran

3 Department of Electrical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran

Abstract

Grid-tied Neutral-Point-Clamped (NPC) inverters have been widely used in various applications recently. A superior control method is required to achieve the desired performance of a grid-connected NPC inverter. Accordingly, a second-order sliding mode control (SOSMC) method, which is designed in the stationary frame, is utilized for achieving this aim in this paper. The super-twisting second-order sliding mode control is used for solving the chattering problem of conventional first-order sliding mode control (FOSMC). In comparison to control methods which are applied in rotation frame, this method is not required transformation from rotating frame to a-b-c frame and vice versa and decoupling of d and q components. The Lyapunov stability analysis is used for designing of this controller. The performance of proposed method is evaluated by simulation results implemented in MATLAB/Simulink software. The performance of the SOSMC is also compared with FOSMC. The results show that the incorporation of SOSMC can improve current reference tracking of the NPC inverter in different scenarios.  

Graphical Abstract

Second Order Sliding Mode Control of Three Phase Neutral Point Clamped Inverter in Stationary Frame

Keywords

Main Subjects


  1. Sajedi S, Farrell M, Basu M. DC side and AC side cascaded multilevel inverter topologies: A comparative study due to variation in design features. International Journal of Electrical Power & Energy Systems. 2019;113:56-70. https://doi.org/10.1016/j.ijepes.2019.05.019
  2. Salehi SJ, Shmasi-Nejad M, Najafi HR. A new multilevel inverter based on harvest of unused energies for photovoltaic applications. International Journal of Engineering. 2022;35(12):2377-85. https://doi.org/10.5829/IJE.2022.35.12C.14
  3. Mechouma R, Mebarki H, Azoui B. Behavior of nine levels NPC three-phase inverter topology interfacing photovoltaic system to the medium electric grid under variable irradiance. Electrical Engineering. 2018;100:2129-45. https://doi.org/10.2298/SJEE1402315M
  4. Jiang J, Liang Z, Wang H. A comprehensive review on single DC source multilevel inverters for renewable energy applications. Electrical Engineering. 2023;105(6):3895-917. https://doi.org/10.1007/s00202-023-01921-4
  5. Salehi SJ, Shmasi-Nejad M, Najafi HR. A new multilevel inverter based on harvest of unused energies for photovoltaic applications. International Journal of Engineering, Transactions C: Aspects. 2022;35(12):2377-85. 10.5829/IJE.2022.35.12C.14
  6. Rtibi W, M’barki L, Yaich M, Ayadi M. Implementation of the ACO algorithm in an electrical vehicle system powered by five-level NPC inverter. Electrical Engineering. 2021;103:1335-45. https://doi.org/10.5829/ije.2022.35.12c.14
  7. Zhang J, Zhang Y, Zhou J, Wang J, Shi G, Cai X. Control of a hybrid modular solid-state transformer for uninterrupted power supply under MVdc short-circuit fault. IEEE Transactions on Industrial Electronics. 2022;70(1):76-87. https://doi.org/10.1109/TIE.2022.3153801
  8. Salehi S, Shmasi-Nejad M, Najafi HR. A New Generalized Step-up Multilevel Inverter Topology Based on Combined T-type and Cross Capacitor Modules. International Journal of Engineering. 2023;36(7):1354-68. https://doi.org/10.5829/IJE.2022.35.12C.14
  9. Colak I, Kabalci E, Bayindir R. Review of multilevel voltage source inverter topologies and control schemes. Energy conversion and management. 2011;52(2):1114-28. https://doi.org/10.1016/j.enconman.2010.09.006
  10. Mousazadeh Mousavi SY, Zabihi Laharami M, Niknam Kumle A, Fathi SH. Application of ABC algorithm for selective harmonic elimination switching pattern of cascade multilevel inverter with unequal DC sources. International Transactions on Electrical Energy Systems. 2018;28(4):e2522. https://doi.org/10.1002/etep.2522
  11. Rodriguez J, Lai J-S, Peng FZ. Multilevel inverters: a survey of topologies, controls, and applications. IEEE Transactions on industrial electronics. 2002;49(4):724-38. https://doi.org/10.1109/TIE.2002.801052
  12. Hamzeh M, Ghazanfari A, Mokhtari H, Karimi H. Integrating hybrid power source into an islanded MV microgrid using CHB multilevel inverter under unbalanced and nonlinear load conditions. IEEE Transactions on energy Conversion. 2013;28(3):643-51. https://doi.org/10.1109/TEC.2013.2267171
  13. Rodriguez J, Bernet S, Steimer PK, Lizama IE. A survey on neutral-point-clamped inverters. IEEE transactions on Industrial Electronics. 2009;57(7):2219-30. https://doi.org/10.1109/TIE.2009.2032430
  14. Nabae A, Takahashi I, Akagi H. A new neutral-point-clamped PWM inverter. IEEE Transactions on industry applications. 1981(5):518-23. https://doi.org/10.1109/TIA.1981.4503992
  15. Escalante MF, Vannier J-C, Arzandé A. Flying capacitor multilevel inverters and DTC motor drive applications. IEEE Transactions on Industrial Electronics. 2002;49(4):809-15. https://doi.org/10.1109/TIE.2002.801231
  16. Sagvand F, Siahbalaee J, Koochaki A. A Novel 19-Level Boost Type Switched-capacitor Inverter with Two DC Sources and Reduced Semiconductor Devices. International Journal of Engineering. 2023;36(2):253-63. https://doi.org/10.5829/ije.2023.36.02b.06
  17. Wu B, Narimani M. Cascaded H‐bridge multilevel inverters. 2017. https://doi.org/10.28991/ESJ-2022-06-01-014
  18. Alemi-Rostami M, Rezazadeh G. Selective harmonic elimination of a multilevel voltage source inverter using whale optimization algorithm. International Journal of Engineering. 2021;34(8):1898-904. https://doi.org/10.5829/ije.2021.34.08b.11
  19. Tavassoli F, Ghoreishy H, Adabi J, Rezanejad M. An advanced modulation technique featuring common mode voltage suppression for three-phase neutral point clamped back to back converters. International Journal of Engineering. 2022;35(11):2220-8. https://doi.org/10.5829/ije.2022.35.11b.17
  20. Sebaaly F, Vahedi H, Kanaan HY, Moubayed N, Al-Haddad K. Sliding mode fixed frequency current controller design for grid-connected NPC inverter. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2016;4(4):1397-405. https://doi.org/10.1109/JESTPE.2016.2586378
  21. Alhosaini W, Wu Y, Zhao Y. An enhanced model predictive control using virtual space vectors for grid-connected three-level neutral-point clamped inverters. IEEE Transactions on Energy Conversion. 2019;34(4):1963-72. https://doi.org/10.1109/TEC.2019.2923370
  22. Rossi M, Karamanakos P, Castelli-Dezza F. An Indirect Model Predictive Control Method for Grid-Connected Three-Level Neutral Point Clamped Converters With $ LCL $ Filters. IEEE Transactions on Industry Applications. 2022;58(3):3750-68. https://doi.org/10.1109/TIA.2022.3152463
  23. Ozdemir S, Altin N, Sefa I, Zhang Z, Komurcugil H. Super twisting sliding mode control of three-phase grid-tied neutral point clamped inverters. ISA transactions. 2022;125:547-59. https://doi.org/10.1109/ACCESS.2022.3218338
  24. Kelkoul B, Boumediene A. Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for doubly fed induction generator (DFIG) under wind turbine. Energy. 2021;214:118871. https://doi.org/10.1016/j.energy.2020.118871
  25. Manzanilla A, Ibarra E, Salazar S, Zamora ÁE, Lozano R, Munoz F. Super-twisting integral sliding mode control for trajectory tracking of an Unmanned Underwater Vehicle. Ocean Engineering. 2021;234:109164. https://doi.org/10.3390/jmse11091744
  26. Komurcugil H, Ozdemir S, Sefa I, Altin N, Kukrer O. Sliding-Mode Control for Single-Phase Grid-Connected $\mbox {LCL} $-Filtered VSI With Double-Band Hysteresis Scheme. IEEE Transactions on Industrial Electronics. 2015;63(2):864-73. https://doi.org/10.1109/TIE.2015.2477486
  27. Guzman R, de Vicuña LG, Castilla M, Miret J, de la Hoz J. Variable structure control for three-phase LCL-filtered inverters using a reduced converter model. IEEE Transactions on Industrial Electronics. 2017;65(1):5-15. https://doi.org/10.1109/TIE.2017.2716881
  28. Altin N, Ozdemir S, Komurcugil H, Sefa I. Sliding-mode control in natural frame with reduced number of sensors for three-phase grid-tied LCL-interfaced inverters. IEEE Transactions on Industrial Electronics. 2018;66(4):2903-13. https://doi.org/10.1109/TIE.2018.2847675
  29. Gao W, Wang Y, Homaifa A. Discrete-time variable structure control systems. IEEE transactions on Industrial Electronics. 1995;42(2):117-22. https://doi.org/10.1109/41.370376