Design and Optimization of High-gain Series and Parallel-fed Array Antennas for Enhanced Gain and Front-to-back Ratio in X-Band Applications

Document Type : Original Article

Authors

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, AP, India

Abstract

This study presents a comprehensive analysis of the design of a high-performance meta-material loaded square patch antenna arrays specifically tailored for X-band applications. To enhance the gain and front to back ratio (FTBR), a novel 1×3 series-fed linear array configuration that integrates solitary series-fed elements with metamaterial-based square patches at X-band frequencies is introduced. Later, parallel-fed 1×2 and 1×4 antenna arrays are designed by considering the series-fed antenna array as a single element for further enhancement of gain and FTBR. The single element 1×3 series fed array is fabricated with dimensions of λ×3.5λ×0.028λ, whereas the respective 1×2 and 1×4 parallel fed antenna arrays has the dimensions of 2.86λ×3.8λ×0.028λ and 2.86λ×4.3λ×0.028λ, respectively. The Taconic substrate is chosen as the dielectric material, exhibiting a dielectric constant of 2.2 and a loss tangent of 0.0025. The empirical data presented substantiates the superior performance of the 1×4 parallel fed configuration. This is evident through the remarkable reflection coefficient of -25dB, the wide bandwidth spanning 47MHz, the substantial gain of 17.8dBi, and the FTBR of 30.7. The metrics serve to highlight the array''s capacity in guaranteeing a superior level of signal fidelity, encompassing a wide frequency spectrum, amplifying incoming signals, and directing transmissions towards specific orientations. These metrics unequivocally validate its potential for advanced X-band applications.

Graphical Abstract

Design and Optimization of High-gain Series and Parallel-fed Array Antennas for Enhanced Gain and Front-to-back Ratio in X-Band Applications

Keywords


  1. Ravindra V, Akbar PR, Zhang M, Hirokawa J, Saito H, Oyama A. A Dual-Polarization $ X $-Band Traveling-Wave Antenna Panel for Small-Satellite Synthetic Aperture Radar. IEEE Transactions on Antennas and Propagation. 2017;65(5):2144-56. 10.1109/TAP.2017.2676760
  2. Mao C-X, Gao S, Tienda C, Rommel T, Patyuchenko A, Younis M, et al. X/Ka-band dual-polarized digital beamforming synthetic aperture radar. IEEE Transactions on Microwave Theory and Techniques. 2017;65(11):4400-7. 10.1109/TMTT.2017.2690435
  3. Rabideau DJ, Parker P, editors. Ubiquitous MIMO multifunction digital array radar. The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003; 2003: IEEE.
  4. Kuo F-Y, Hwang R-B. High-isolation X-band marine radar antenna design. IEEE Transactions on Antennas and Propagation. 2014;62(5):2331-7. 10.1109/TAP.2014.2307296
  5. Skolnik MI. Radar handbook. 1970.
  6. Li M, Tian S, Tang M-C, Zhu L. A compact low-profile hybrid-mode patch antenna with intrinsically combined self-decoupling and filtering properties. IEEE Transactions on Antennas and Propagation. 2021;70(2):1511-6. 10.1109/TAP.2021.3111638
  7. Chang L, Liu H. Low-profile and miniaturized dual-band microstrip patch antenna for 5G mobile terminals. IEEE Transactions on Antennas and Propagation. 2021;70(3):2328-33. 10.1109/TAP. 2021.3118730
  8. Wang B, Zhao Z, Sun K, Du C, Yang X, Yang D. Wideband Series-Fed Microstrip Patch Antenna Array With Flat Gain Based on Magnetic Current Feeding Technology. IEEE Antennas and Wireless Propagation Letters. 2022;22(4):834-8. 10.1109/LAWP.2022.3226461
  9. Ling C, Rebeiz GM. 94 GHz integrated horn monopulse antennas. IEEE transactions on antennas and propagation. 1992;40(8):981-4. 10.1109/8.163437
  10. Soltan A, Neshati M. Design and Development of High Gain, Low Profile and Circularly Polarized Cavity-backed Slot Antennas Using High-order Modes of Square Shaped Substrtae Integrated Waveguide Resonator. International Journal of Engineering, Transactions C: Aspects. 2017;30(12):1840-7. 10.5829/ije.2017.30.12c.04
  11. Khatami SA, Meiguni J, Elahi AA-e, Rezaei P. Compact via-coupling fed monopulse antenna with orthogonal tracking capability in radiation pattern. IEEE Antennas and Wireless Propagation Letters. 2020;19(8):1443-6. 10.1109/LAWP.2020.3005023
  12. Kumar H, Kumar G. Broadband monopulse microstrip antenna array for X‐band monopulse tracking. IET Microwaves, Antennas & Propagation. 2018;12(13):2109-14. 10.1049/iet-map.2018.5332
  13. Lamultree S, Phalla M, Kunkritthanachai P, Phongcharoenpanich C. Design of a Circular Patch Antenna with Parasitic Elements for 5G Applications. International Journal of Engineering. 2023;36(9):1686-94. 10.5829/ije.2023.36.09c.13
  14. Fakharian M. A wideband fractal planar monopole antenna with a thin slot on radiating stub for radio frequency energy harvesting applications. International Journal of Engineering, Transactions B: Applications 2020;33(11):2181-7. 10.5829/IJE.2020.33.11B.08
  15. Atamanesh M, Abbasi Arand B, Zahedi A. Wideband microstrip antenna array with simultaneously low sidelobe level in both sum and difference patterns. IET Microwaves, Antennas & Propagation. 2018;12(5):820-5. 10.1049/iet-map.2017.0494
  16. Contreras A. Objective Functions for the Optimization of an Ultra Wideband Antenna. International Journal of Engineering. 2021;34(7):1743-9. 10.5829/ije.2021.34.07a.19
  17. Aliasgari J, Atlasbaf Z. A novel compact monopulse parallel-plate slot array antenna. IEEE Antennas and Wireless Propagation Letters. 2015;15:762-5. 10.1109/LAWP.2015.2472462
  18. Ying F, Ahmed F, Li R. A multiband multiple-input multiple-output antenna system for long term evolution and wireless local area networks handsets. International Journal of Engineering, Transactions B: Applications 2016;29(8):1087-93. 10.5829/idosi.ije.2016.29.08b.08
  19. Cheng YJ, Hong W, Wu K. 94 GHz substrate integrated monopulse antenna array. IEEE transactions on antennas and propagation. 2011;60(1):121-9. 10.1109/TAP.2011.2167945
  20. Dashti H. Design investigation of microstrip patch and half-mode substrate integrated waveguide cavity hybrid antenna arrays. International Journal of Engineering, Transactions B: Applications 2015;28(5):686-92. 10.5829/idosi.ije.2015.28.05b.06
  21. Li W, Liu S, Deng J, Hu Z, Zhou Z. A compact SIW monopulse antenna array based on microstrip feed. IEEE Antennas and Wireless Propagation Letters. 2020;20(1):93-7. 10.1109/LAWP.2020.3041485
  22. Yang T, Zhao Z, Yang D, Liu X, Liu Q-H. A single-layer SIW slots array monopulse antenna excited by a dual-mode resonator. IEEE Access. 2019;7:131282-8. 10.1109/ACCESS.2019.2940635
  23. Menzel W, Moebius A. Antenna concepts for millimeter-wave automotive radar sensors. Proceedings of the IEEE. 2012;100(7):2372-9. 10.1109/JPROC.2012.2184729
  24. Xu J, Hong W, Zhang H, Wang G, Yu Y, Jiang ZH. An array antenna for both long-and medium-range 77 GHz automotive radar applications. IEEE transactions on antennas and propagation. 2017;65(12):7207-16. 10.1109/TAP.2017.2761549
  25. Zhao J, Zou L, Jiang R, Wang X, Gao H. Hybrid antenna arrays with high angular resolution for 77 GHz automotive radars. IEICE Electronics Express. 2020;17(2):20190687-. 10.1109/TAP.2017.2761549
  26. Kothapudi VK, Kumar V. A 6-Port Two-Dimensional $3\\times 3$ Series-Fed Planar Array Antenna for Dual-Polarized X-Band Airborne Synthetic Aperture Radar Applications. Ieee Access. 2018;6:12001-7. 10.1109/ACCESS.2018.2810233
  27. Kothapudi VK, Kumar V. Compact 1× 2 and 2× 2 dual polarized series-fed antenna array for X-band airborne synthetic aperture radar applications. Journal of electromagnetic engineering and science. 2018;18(2):117-28. 10.26866/jees.2018.18.2.117
  28. Bayderkhani R, Hassani HR. Wideband and low sidelobe slot antenna fed by series-fed printed array. IEEE Transactions on Antennas and Propagation. 2010;58(12):3898-904. 10.1109/TAP.2010.2078437