Effect of Current Density on Magnetic and Hardness Properties of Ni-Cu Alloy Coated on Al via Electrodeposition

Document Type : Original Article


1 Department of Physics, Universitas Indonesia, Depok, Indonesia

2 Department of Petroleum, Universitas Trisakti, Jakarta, Indonesia

3 Department of Geoscience, Universitas Indonesia, Depok, Indonesia

4 Plasma and Nanomaterial Research Group, Politeknik STTT Bandung, Bandung, Indonesia

5 Department of Mechanical Engineering, Universitas Negeri Jakarta, Jakarta, Indonesia


Nickel (Ni)-rich single-phase nickel-copper (Ni-Cu) alloy coatings were produced on aluminum (Al) substrates by electrodeposition in stabilized citrate baths. Electrodeposition experiments were performed at four different current densities. Increasing the current density resulted in the metal deposition rate increasing faster than the hydrogen evolution rate; thus, the cathodic current efficiency increased. The crystal systems of the Ni-Cu alloys were face center cubic (fcc), with the (111) plane as the preferred crystal plane. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) measurements showed that the Ni content in the coating increased with increasing current density. The Ni-Cu 40 sample had the most Ni content and showed a homogeneous and compact morphology. It was found that the higher the concentration of Ni in the solution, the smaller the grain size. Measurements recorded with a vibrating sample magnetometer (VSM) showed that the Ni-Cu 40 sample provided magnetic saturation, with the highest value being 0.108 emu/g. The microhardness method produced 404 HV on the Ni-Cu 40 sample. In conclusion, higher current densities were associated with a higher Ni composition and increased thickness, which were responsible for the increases in the magnetic properties and hardness.

Graphical Abstract

Effect of Current Density on Magnetic and Hardness Properties of Ni-Cu Alloy Coated on Al via Electrodeposition


Main Subjects

  1. Chen Z, Wang C, Tang C, Lek YZ, Kandukuri SY, Du H, et al. Microstructure and mechanical properties of a Monel K-500 alloy fabricated by directed energy deposition. Materials Science and Engineering: A. 2022;857:144113. https://doi.org/10.1016/j.msea.2022.144113
  2. Kukliński M, Bartkowska, A., and Przestacki, D. . Microstructure and selected properties of Monel 400 alloy after laser heat treatment and laser boriding using diode laser. International Journal of Advanced Manufacturing Technology. 2018;98(9-12): 3005–17. https://doi.org/10.1007/s00170-018-2343-9
  3. Mohagheghpour E, Larijani M, Rajabi M, Gholamipour R. Effect of Silver Clusters Deposition on Wettability and Optical Properties of Diamond-like Carbon Films. International Journal of Engineering, Transactions C: Aspects, . 2021;34(3):706-13. https://doi.org/10.5829/ije.2021.34.03c.15
  4. Nady H, Negem M. Ni–Cu nano-crystalline alloys for efficient electrochemical hydrogen production in acid water. RSC advances. 2016;6(56):51111-9. https://doi.org/10.1039/c6ra08348j
  5. Negem M, Nady H. Electroplated Ni-Cu nanocrystalline alloys and their electrocatalytic activity for hydrogen generation using alkaline solutions. international journal of hydrogen energy. 2017;42(47):28386-96. https://doi.org/10.1016/j.ijhydene.2017.09.147
  6. Guisbiers G, Khanal S, Ruiz-Zepeda F, De La Puente JR, José-Yacaman M. Cu–Ni nano-alloy: mixed, core–shell or Janus nano-particle? Nanoscale. 2014;6(24):14630-5. https://doi.org/10.1039/c4nr05739b
  7. Mae Y. What the Darken–Gurry plot means about the solubility of elements in metals. Metallurgical and Materials Transactions A. 2016;47(12):6498-506. https://doi.org/10.1007/s11661-016-3730-1
  8. Alizadeh M, Safaei H. Characterization of Ni-Cu matrix, Al2O3 reinforced nano-composite coatings prepared by electrodeposition. Applied Surface Science. 2018;456:195-203. https://doi.org/10.1016/j.apsusc.2018.06.095
  9. Toghraei M, Siadati H. Electrodeposited co-pi catalyst on α-Fe2O3 photoanode for water-splitting applications. International Journal of Engineering. 2018;31(12):2085-91. 10.5829/ije.2018.31.12c.13
  10. KK P. Experimental investigation by cryogenic treatment of aluminium 6063 and 8011 and nicow coating to improve hardness and wear. International Journal of Engineering. 2016;29(6):827-33. https://doi.org/10.5829/idosi.ije.2016.29.06c.12
  11. Kumar D, Angra S, Singh S. Mechanical properties and wear behaviour of stir cast aluminum metal matrix composite: a review. International Journal of Engineering. 2022;35(4):794-801. https://doi.org/10.5829/IJE.2022.35.04A.19
  12. Moosaei H, Zareei A, Salemi N. Elevated Temperature Performance of Concrete Reinforced with Steel, Glass, and Polypropylene Fibers and Fire-proofed with Coating. International Journal of Engineering. 2022;35(5):917-30. https://doi.org/10.5829/ije.2022.35.05b.08
  13. Poursaeidi E, Salarvand A. Comparison of properties of ti/tin/ticn/tialn film deposited by cathodic arc physical vapor and plasma-assisted chemical vapor deposition on custom 450 steel substrates. International Journal of Engineering. 2016;29(10):1459-68. https://doi.org/10.5829/idosi.ije.2016.29.10a.17
  14. Allahyarzadeh M, Aliofkhazraei M, Rouhaghdam AS, Torabinejad V. Gradient electrodeposition of Ni-Cu-W (alumina) nanocomposite coating. Materials & Design. 2016;107:74-81. https://doi.org/10.1016/j.matdes.2016.06.019
  15. Geramipour F, Khoei SM, Gugtapeh HS. Effect of shaped waveform on structure and electrochemical corrosion behavior of pulse electrodeposited NiCu alloy coatings. Surface and Coatings Technology. 2021;424:127643. https://doi.org/10.1016/j.surfcoat.2021.127643
  16. Thurber CR, Ahmad YH, Sanders SF, Al-Shenawa A, D'Souza N, Mohamed AM, et al. Electrodeposition of 70-30 Cu–Ni nanocomposite coatings for enhanced mechanical and corrosion properties. Current Applied Physics. 2016;16(3):387-96. https://doi.org/10.1016/j.cap.2015.12.022
  17. Goranova D, Rashkov R, Avdeev G, Tonchev V. Electrodeposition of Ni–Cu alloys at high current densities: details of the elements distribution. Journal of Materials Science. 2016;51:8663-73. https://doi.org/10.1007/s10853-016-0126-y
  18. Lee W-H, Chung K. Investigation of a copper–nickel alloy resistor using co-electrodeposition. Journal of Applied Electrochemistry. 2020;50:535-47. https://doi.org/10.1007/s10800-020-01398-0
  19. Pingale AD, Belgamwar SU, Rathore JS. Effect of graphene nanoplatelets addition on the mechanical, tribological and corrosion properties of Cu–Ni/Gr nanocomposite coatings by electro-co-deposition method. Transactions of the Indian Institute of Metals. 2020;73:99-107. https://doi.org/10.1007/s12666-019-01807-9
  20. Hughes RA, Menumerov E, Neretina S. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces. Nanotechnology. 2017;28(28):282002. https://doi.org/10.1088/1361-6528/aa77ce
  21. Kamel M, Anwer Z, Abdel‐Salam I, Ibrahim I. Electrodeposition of nanocrystalline Ni–Cu alloy from environmentally friendly lactate bath. Surface and Interface Analysis. 2014;46(7):442-8. https://doi.org/10.1002/sia.5525
  22. Awasthi S, Pandey SK, Balani K. Tuning the magnetism and tribological behaviour of electrodeposited Ni/Cu bi-layer by selective reinforcement of carbon nanotubes. Journal of Alloys and Compounds. 2020;818:153287. https://doi.org/10.1016/j.jallcom.2019.153287
  23. Heidarzadeh A, Saeid T. Correlation between process parameters, grain size and hardness of friction-stir-welded Cu–Zn alloys. Rare Metals. 2018;37:388-98. https://doi.org/10.1007/s12598-016-0704-9
  24. Karunakaran M, Pugazhvadivu M, Gunasegaran V, Gowtham G. Electrodeposition of Cu-Ni-PW Composite on Al-6063 Substrate. 2018. https://doi.org/10.26438/ijsrpas/v6i3.5964
  25. Karunakaran M, Vadivu MP. Magnetic and micro-mechanical behavior of Cu-Ni-PW-TiO2 hybrid composite electroplating on Al alloy substrate. Journal of Magnetism and Magnetic Materials. 2019;475:359-67. https://doi.org/10.1016/j.jmmm.2018.11.077
  26. Soegijono B, Susetyo F, editors. Magnetic field exposure on electroplating process of ferromagnetic nickel ion on copper substrate. Journal of Physics: Conference Series; 2022: IOP Publishing.
  27. Deo Y, Guha S, Sarkar K, Mohanta P, Pradhan D, Mondal A. Electrodeposited Ni-Cu alloy coatings on mild steel for enhanced corrosion properties. Applied Surface Science. 2020;515:146078. https://doi.org/10.1016/j.apsusc.2020.146078
  28. Seakr R. Microstructure and crystallographic characteristics of nanocrystalline copper prepared from acetate solutions by electrodeposition technique. Transactions of Nonferrous Metals Society of China. 2017;27(6):1423-30. https://doi.org/10.1016/S1003-6326(17)60164-X
  29. Dolabella S, Borzì A, Dommann A, Neels A. Lattice strain and defects analysis in nanostructured semiconductor materials and devices by high‐resolution X‐ray diffraction: theoretical and practical aspects. Small Methods. 2022;6(2):2100932. https://doi.org/10.1002/smtd.202100932
  30. Budi S, Tawwabin RA, Cahyana U, Paristiowati M. Saccharin-assisted galvanostatic electrodeposition of nanocrystalline FeCo films on a flexible substrate. International Journal of Electrochemical Science. 2020;15(7):6682-94. https://doi.org/10.20964/2020.07.74
  31. Syamsuir S, Soegijono B, Yudanto SD, Basori B, Ajiriyanto MK, Nanto D, et al. Electrolyte Temperature Dependency of Electrodeposited Nickel in Sulfate Solution on the Hardness and Corrosion Behaviors. International Journal of Engineering, Transactions C: Aspects, . 2023;36(6):1193-200. 10.5829/ije.2023.36.06c.18
  32. Soegijono B, Susetyo FB, Fajrah MC. Electrodeposition of Paramagnetic Copper Film under Magnetic Field on Paramagnetic Aluminum Alloy Substrates. e-Journal of Surface Science and Nanotechnology. 2020;18:281-8. https://doi.org/10.1380/EJSSNT.2020.281
  33. Devi C, Ashokkumar R. INFLUENCE OF DIFFERENT CURRENT DENSITY ON CHARACTERISTICS OF NiFeP NANO ALLOY THIN FILMS. Rasayan Journal of Chemistry. 2018;11(3). https://doi.org/10.31788/RJC.2018.1133088
  34. Li B, Mei T, Li D, Du S. Ultrasonic-assisted electrodeposition of Ni-Cu/TiN composite coating from sulphate-citrate bath: Structural and electrochemical properties. Ultrasonics sonochemistry. 2019;58:104680. https://doi.org/10.1016/j.ultsonch.2019.104680
  35. Sarac U, Baykul MC. Morphological and microstructural properties of two-phase Ni–Cu films electrodeposited at different electrolyte temperatures. Journal of alloys and compounds. 2013;552:195-201. https://doi.org/10.1016/j.jallcom.2012.10.071
  36. Arasteh J. Microhardness Optimization of Al–TiC Nanocomposite Produced by Mechanical Milling and Heat Treatment. Advanced Ceramics Progress. 2021;7(1):35-45. https://doi.org/10.30501/ACP.2021.265197.1052
  37. Goranova D, Avdeev G, Rashkov R. Electrodeposition and characterization of Ni–Cu alloys. Surface and Coatings Technology. 2014;240:204-10. https://doi.org/10.1016/j.surfcoat.2013.12.014
  38. Hu G, Huang R, Wang H, Zhao Q, Zhang X. Facile galvanic replacement deposition of nickel on copper substrate in deep eutectic solvent and its activation ability for electroless Ni–P plating. Journal of Solid State Electrochemistry. 2022;26(5):1313-22. https://doi.org/10.1007/s10008-022-05172-4
  39. Niu J, Song M, Zhang Y, Zhang Z. Dealloying induced nanoporosity evolution of less noble metals in Mg ion batteries. Journal of Magnesium and Alloys. 2021;9(6):2122-32. https://doi.org/10.1016/j.jma.2021.04.003
  40. Wang S, Guo X, Yang H, Dai J, Zhu R, Gong J, et al. Electrodeposition mechanism and characterization of Ni–Cu alloy coatings from a eutectic-based ionic liquid. Applied Surface Science. 2014;288:530-6. https://doi.org/10.1016/j.apsusc.2013.10.065
  41. Nwaeju CC, Eboh, A. O., and Edoziuno, F. O. . Grain size evolution mechanical and corrosion behaviour of precipitate strengthened Cu-Ni alloy. Acta Metallurgica Slovaca. 2022;28(4):188–96. https://doi.org/10.36547/ams.28.4.1609
  42. Ameri Ekhtiarabadi T, Zandrahimi M, Ebrahimifar H. The Impact of Current Density of Electroplating on Microstructure and Mechanical Properties of Ni-ZrO2-TiO2 Composite Coating. Advanced Ceramics Progress. 2020;6(1):22-9. https://doi.org/10.30501/acp.2020.233518.1038
  43. Wang C, Hossain Bhuiyan ME, Moreno S, Minary-Jolandan M. Direct-write printing copper–nickel (Cu/Ni) alloy with controlled composition from a single electrolyte using co-electrodeposition. ACS applied materials & interfaces. 2020;12(16):18683-91. https://doi.org/10.1021/acsami.0c01100
  44. Hanachi M, Seyedraoufi Z, Abouei V. Investigation of Microstructure, Hardness, and Corrosion Resistance of Ni-P-GO Electroless Nanocomposite Coating on AZ31D Alloy Surface. Advanced Ceramics Progress. 2020;6(3):55-62. https://doi.org/10.30501/acp.2020.233518.1038
  45. Dhara B, Jha PK, Gupta K, Bind VK, Ballav N. Diamagnetic Molecules Exhibiting Room-Temperature Ferromagnetism in Supramolecular Aggregates. The Journal of Physical Chemistry C. 2017;121(22):12159-67. https://doi.org/10.1021/acs.jpcc.7b02145
  46. Qasim I, Waqee-ur-Rehman M, Mumtaz M, Hussain G, Nadeem K, Shehzad K. Ferromagnetic (Ni) nanoparticles–CuTl-1223 superconductor composites. Journal of Magnetism and Magnetic Materials. 2016;403:60-7. https://doi.org/10.1016/j.jmmm.2015.11.066
  47. Padmapriya G, Manikandan A, Krishnasamy V, Jaganathan SK, Antony SA. Enhanced catalytic activity and magnetic properties of spinel Mn x Zn 1− x Fe 2 O 4 (0.0≤ x≤ 1.0) nano-photocatalysts by microwave irradiation route. Journal of Superconductivity and Novel Magnetism. 2016;29:2141-9. https://doi.org/10.1007/s10948-016-3527-x
  48. Demidenko O, Zhyvulka A, Yanushkevich K, Galias A, Constantin V, Neacsu E, et al. Magnetic properties of stainless steels under corrosive action of based on choline chloride ionic liquids. Journal of Magnetism and Magnetic Materials. 2019;477:74-6. https://doi.org/10.1016/j.jmmm.2019.01.034
  49. Marenych O, Ding D, Pan Z, Kostryzhev A, Li H, van Duin S. Effect of chemical composition on microstructure, strength and wear resistance of wire deposited Ni-Cu alloys. Additive Manufacturing. 2018;24:30-6. https://doi.org/10.1016/j.addma.2018.08.003
  50. Ramkumar KD, Joshi V, Pandit S, Agrawal M, Kumar OS, Periwal S, et al. Investigations on the microstructure and mechanical properties of multi-pass pulsed current gas tungsten arc weldments of Monel 400 and Hastelloy C276. Materials & Design. 2014;64:775-82. https://doi.org/10.1016/j.matdes.2014.08.055