Seismic Fragility of FRC Columns using Incremental Dynamic Analysis and eXtended Finite Element Method

Document Type : Original Article

Authors

MODSGC Unit, National School of Applied Sciences Al Hoceima, University Abdelmalek Essaadi, Tangier, Morocco

Abstract

Ensuring seismic resilience in earthquake-prone regions is imperative for structural safety. Fiber-Reinforced Concrete (FRC) columns hold promise for enhancing structural performance under seismic conditions. This study seeks to comprehensively evaluate their seismic behavior. The primary objective of this research is to assess and compare the seismic performance of various FRC column types, including polypropylene fibers (PFRC), steel fibers (SFRC), and hybrid combinations (HyFRC), in contrast to conventional reinforced concrete (RC) columns. To achieve this, the study employs eXtended Finite Element Method combined with Concrete Damage Plasticity (XFEM-CDP) in Abaqus to scrutinize static and dynamic responses. The nonlinear static pushover analysis unveiled a notable improvement in seismic resistance across all FRC types when compared to RC columns. Incremental dynamic analyses (IDA) are conducted using the selected suite of 10 near fault as-recorded ground motions to evaluate the inelastic seismic responses of different FRC bridge columns. XFEM-CDP simulations in Abaqus captured multiple aspects of FRC columns, such as concrete cracking, loss of stiffness and plastic behavior. Seismic fragility analysis of these FRC columns is conducted considering four damage states: a) longitudinal steel yielding, b) core concrete crushing, c) steel bar buckling, and d) longitudinal steel bar fracture. The results indicated that HyFRC columns exhibit the lowest damage vulnerability compared to PFRC and SFRC variants.

Graphical Abstract

Seismic Fragility of FRC Columns using Incremental Dynamic Analysis and eXtended Finite Element Method

Keywords

Main Subjects


  1. Mohammed AH, Mubarak HM, Hussein AK, Abulghafour TZ, Nassani DE. Punching Shear Characterization of Steel Fiber-Reinforced Concrete Flat Slabs. HighTech and Innovation Journal. 2022;3(4):483-90.
  2. Bouzid L, Hamizi M, Hannachi N-E, Nekmouche A, Akkouche K. Plastic hinges mechano-reliability analysis in the beams of RC frames structures. World Journal of Engineering. 2020;17(5):719-32. 10.1108/WJE-02-2020-0069
  3. Fanning PJ, Boothby TE. Three-dimensional modelling and full-scale testing of stone arch bridges. Computers & Structures. 2001;79(29-30):2645-62. 10.1016/S0045-7949(01)00109-2
  4. Brencich A, Sabia D. Experimental identification of a multi-span masonry bridge: The Tanaro Bridge. Construction and Building Materials. 2008;22(10):2087-99. 10.1016/J.CONBUILDMAT.2007.07.031
  5. Reccia E, Milani G, Cecchi A, Tralli A. Full 3D homogenization approach to investigate the behavior of masonry arch bridges: The Venice trans-lagoon railway bridge. Construction and Building Materials. 2014;66:567-86. 10.1016/J.CONBUILDMAT.2014.05.096
  6. LI S, Yu T, Jia J. Empirical seismic vulnerability and damage of bottom frame seismic wall masonry structure: A case study in Dujiangyan (China) region. International Journal of Engineering, Transactions C: Aspects. 2019;32(9):1260-8. 10.5829/ije.2019.32.09c.05
  7. Xiong Z, Chen J, Liu C, Li J, Li W. Bridge’s Overall Structural Scheme Analysis in High Seismic Risk Permafrost Regions. Civil Engineering Journal. 2022;8(7):1316-27. 10.28991/CEJ-2022-08-07-01
  8. Kamrani Moghaddam P, Manafpour A. Effects of Far-and Near-Field Multiple Earthquakes on the RC SDOF Fragility Curves Using Different First Shock Scaling Methods. International Journal of Engineering, Transactions C: Aspects,. 2018;31(9):1505-13. 10.5829/ije.2018.31.09c.05
  9. Conde B, Ramos LF, Oliveira DV, Riveiro B, Solla M. Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: Application to Vilanova bridge. Engineering Structures. 2017;148:621-38. 10.1016/J.ENGSTRUCT.2017.07.011
  10. Cannizzaro F, Pantò B, Caddemi S, Caliò I. A Discrete Macro-Element Method (DMEM) for the nonlinear structural assessment of masonry arches. Engineering Structures. 2018;168:243-56. 10.1016/J.ENGSTRUCT.2018.04.006
  11. Milani G, Lourenço PB. 3D non-linear behavior of masonry arch bridges. Computers & Structures. 2012;110:133-50. 10.1016/J.COMPSTRUC.2012.07.008
  12. Oliveira DV, Lourenço PB, Lemos C. Geometric issues and ultimate load capacity of masonry arch bridges from the northwest Iberian Peninsula. Engineering Structures. 2010;32(12):3955-65. 10.1016/J.ENGSTRUCT.2010.09.006
  13. Asadi P, Sourani H. Fragility curves production by seismic improvement of the high-dimensional model representation method. Engineering Computations. 2020;37(1):120-43. 10.1108/EC-12-2018-0586
  14. Zhang Y, Macorini L, Izzuddin BA. Numerical investigation of arches in brick-masonry bridges. Structure and Infrastructure Engineering. 2018;14(1):14-32. 10.1080/15732479.2017.1324883
  15. Baharmast H, Razmyan S, Yazdani A. Approximate incremental dynamic analysis using reduction of ground motion records. International Journal of Engineering, Transactions B: Applications. 2015;28(2):190-7. 10.5829/idosi.ije.2015.28.02b.04
  16. Luco N, Cornell CA, editors. Effects of random connection fractures on the demands and reliability for a 3-story pre-Northridge SMRF structure. Proceedings of the 6th US national conference on earthquake engineering; 1998: Citeseer.
  17. Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthquake engineering & structural dynamics. 2002;31(3):491-514. 10.1002/eqe.141
  18. Mohamed Nazri F, Kian Yern C, Moffed Kassem M, Noroozinejad Farsangi E. Assessment of structure-specific fragility curves for soft storey buildings implementing IDA and SPO approaches. International Journal of Engineering, Transactions C: Aspects,. 2018;31(12):2016-21. 10.5829/ije.2018.31.12c.04
  19. Singh V, Sangle K. Analysis of vertically oriented coupled shear wall interconnected with coupling beams. HighTech and Innovation Journal. 2022;3(2):230-42. 10.28991/HIJ-2022-03-02-010
  20. Zhang Y, Dias-da-Costa D. Seismic vulnerability of multi-span continuous girder bridges with steel fibre reinforced concrete columns. Engineering Structures. 2017;150:451-64. 10.1016/j.engstruct.2017.07.053
  21. Huang L, Xu L, Chi Y, Xu H. Experimental investigation on the seismic performance of steel–polypropylene hybrid fiber reinforced concrete columns. Construction and Building Materials. 2015;87:16-27. 10.1016/j.conbuildmat.2015.03.073
  22. Chi Y, Xu L, Zhang Y. Experimental study on hybrid fiber–reinforced concrete subjected to uniaxial compression. Journal of Materials in Civil Engineering. 2014;26(2):211-8. 10.1061/(ASCE)MT.1943-5533.0000764
  23. Lubliner J, Oliver J, Oller S, Onate E. A plastic-damage model for concrete. International Journal of solids and structures. 1989;25(3):299-326. 10.1016/0020-7683(89)90050-4
  24. Lee J, Fenves GL. Plastic-damage model for cyclic loading of concrete structures. Journal of engineering mechanics. 1998;124(8):892-900. 10.1061/(asce)0733-9399(1998)124:8(892)
  25. Chi Y, Yu M, Huang L, Xu L. Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity. Engineering Structures. 2017;148:23-35. 10.1016/j.engstruct.2017.06.039
  26. Abadel A, Abbas H, Almusallam T, Al-Salloum Y, Siddiqui N. Mechanical properties of hybrid fibre-reinforced concrete–analytical modelling and experimental behaviour. Magazine of Concrete Research. 2016;68(16):823-43. 10.1680/jmacr.15.00276
  27. Hordijk D. Local Approach to Fatigue of Concrete Delft University of Technology. 1991.
  28. Almusallam T, Ibrahim S, Al-Salloum Y, Abadel A, Abbas H. Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete. Cement and Concrete Composites. 2016;74:201-17. 10.1016/j.cemconcomp.2016.10.002
  29. Rousakis TC, Karabinis AI, Kiousis PD, Tepfers R. Analytical modelling of plastic behaviour of uniformly FRP confined concrete members. Composites Part B: Engineering. 2008;39(7-8):1104-13. 10.1016/J.COMPOSITESB.2008.05.001
  30. Liang X, Xing P, Xu J. Experimental and numerical investigations of the seismic performance of columns with fiber-reinforced concrete in theplastic hinge region. Advances in Structural Engineering. 2016;19(9):1484-99. 10.1177/1369433216643896
  31. Paulay T, Priestley MN. Seismic design of reinforced concrete and masonry buildings: Wiley New York; 1992.
  32. Berry MP, Eberhard MO. Performance modeling strategies for modern reinforced concrete bridge. University of California, Berkeley. 2008.
  33. Kowalsky MJ. Deformation limit states for circular reinforced concrete bridge columns. Journal of Structural Engineering. 2000;126(8):869-78. 10.1061/(ASCE)0733-9445(2000)126:8(869)
  34. Liu M, Lu B, Liu B, editors. Study on performance index of reinforced concrete bridge column. Software Engineering and Knowledge Engineering: Theory and Practice: Volume 1; 2012: Springer. 10.4028/www.scientific.net/AMM.193-194.1079
  35. Baker JW. Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra. 2015;31(1):579-99. 10.1193/021113EQS025M
  36. Pang Y, Cai L, Ouyang H, Zhou X. Seismic performance assessment of different fibers reinforced concrete columns using incremental dynamic analysis. Construction and Building Materials. 2019;203:241-57. 10.1016/j.cscm.2023.e02303
  37. Zhang C, Cao M. Fiber synergy in multi-scale fiber-reinforced cementitious composites. Journal of Reinforced Plastics and Composites. 2014;33(9):862-74. 10.1177/0731684413514785