Effect of Al59Cu25.5Fe12.5B3 Quasi-crystals on Microstructure and Flexural Strength of Aluminum Matrix Composites Prepared by Spark Plasma Sintering Method

Document Type : Original Article

Authors

1 Ceramic Department, Materials and Energy Research center, Karaj, Iran

2 School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

Abstract

In this study, Al-based composites reinforced with Al59Cu25.5Fe12.5B3 quasicrystal (QC) were prepared by spark plasma sintering (SPS) method. Microstructural and mechanical properties were examined. It is observed that with addition of quasi-crystalline reinforcement the intensity of the quasi-crystalline peak has increased. Also, it is observed that by performing spark plasma sintering, the quasi-crystalline particles maintain their stability. Due to low temperature of the process and the short time of spark plasma sintering, the occurrence of destructive phases within the quasi-crystal has been prevented. based on field emission scanning electron microscopy (FESEM) images, the distribution of quasi-crystalline particles at the sample level has increased. In addition, the mechanical properties are improved by increasing the quasi-crystalline particles. Therefore, the sample with 15 vol.% of quasi-crystal has better results than other samples in improving microstructural and mechanical properties and it can be considered as an optimal sample with suitable practical properties.

Graphical Abstract

Effect of Al59Cu25.5Fe12.5B3 Quasi-crystals on Microstructure and Flexural Strength of Aluminum Matrix Composites Prepared by Spark Plasma Sintering Method

Keywords

Main Subjects


  1. Avar. B, Gogebakan. M, Yilmaz. F. Characterization of the icosahedral quasicrystalline phase in rapidly solidified Al-Cu-Fe alloys. 2008:731–4. 10.1524
  2. Shechtman D, Blech I, Gratias, D. and Cahn, J. W. Metallic Phase with Long-range Orientational Order and No Translational Symmetry. 1984;53:1951-3.
  3. Amini M, Rahimipour M, Tayebi A, Palizdar Y. Effect of milling time on XRD phases and microstructure of a novel Al67Cu20Fe10B3 quasicrystalline alloy. Materials Research Express. 2020;7. 10.1088/2053-1591/ab9b37
  4. Huttunen-Saarivirta E. Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: a review. Journal of Alloys and Compounds. 2004;363(1):154-78. https://doi.org/10.1016/S0925-8388(03)00445-6 http://www.sciencedirect.com/science/article/pii/S0925838803004456
  5. D.J. Sordelet, J.M. Dubois. Quasicrystals: perspectives and potential applications. Mater Res Soc Bull. 1997:34–7. 
  6. Aghaali V, Ebadzadeh T, Karimi Z, Kazemzadeh A, Marzbanrad E. Effect of mechanical alloying and preheating treatment on the phase transformation of the Al-Cu-Fe compacts annealed by microwave radiation. Journal of Materials Research and Technology. 2021. https://doi.org/10.1016/j.jmrt.2021.02.089 https://www.sciencedirect.com/science/article/pii/S2238785421002155
  7. Ghanbariha M, Farvizi M, Ebadzadeh T. Microstructural development in nanostructured AlCoCrFeNi–ZrO2 high-entropy alloy composite prepared with mechanical alloying and spark plasma sintering methods. Materials Research Express. 2019;6:1265b5. 10.1088/2053-1591/ab5fc9
  8. Liaw P, Yeh J-W, Zhang Y. High-entropy alloys: Fundamentals and applications2016. 1-516 p.
  9. Shamah AM, Ibrahim S, Hanna FF. Formation of nano quasicrystalline and crystalline phases by mechanical alloying. Journal of Alloys and Compounds. 2011;509(5):2198-202. https://doi.org/10.1016/j.jallcom.2010.11.001 https://www.sciencedirect.com/science/article/pii/S0925838810027180
  10. Ramanathan A, Krishnan PK, Muraliraja R. A review on the production of metal matrix composites through stir casting – Furnace design, properties, challenges, and research opportunities. Journal of Manufacturing Processes. 2019;42:213-45. https://doi.org/10.1016/j.jmapro.2019.04.017 https://www.sciencedirect.com/science/article/pii/S1526612518312489
  11. Dev Srivyas P, S. Charoo M. Aluminum metal matrix composites a review of reinforcement; mechanical and tribological behavior. 2018. 2018;7(2.4):6. 10.14419/ijet.v7i2.4.13020 https://www.sciencepubco.com/index.php/ijet/article/view/13020
  12. Rajan T, Pillai RM, Pai B. Reinforcement coatings and interfaces in aluminium metal matrix composites. Journal of Materials Science. 1998;33:3491-503.
  13. Aikin RM. The mechanical properties of in-situ composites. JOM. 1997;49(8):35. 10.1007/BF02914400 https://doi.org/10.1007/BF02914400
  14. Singh M, Lewis D, Committee TAJCM, editors. In situ composites : science and technology : proceedings of a symposium sponsored by the Joint SMD and MSD Composite Materials Committee held during Materials Week '93, October 17-21, 1993 in Pittsburgh, Pennsylvania1994; Warrendale, Pa.: Minerals, Metals & Materials Society.
  15. Laplanche G, Joulain A, Bonneville J, Gauthier-Brunet V, Dubois S, Kabir TE. Microstructural and mechanical study of an Al matrix composite reinforced by Al-Cu-Fe icosahedral particles. Journal of Materials Research. 2011;25(5):957-65. 10.1557/JMR.2010.0118 https://www.cambridge.org/core/article/microstructural-and-mechanical-study-of-an-al-matrix-composite-reinforced-by-alcufe-icosahedral-particles/F12E87BE83E7E266EE1571CDB1616764
  16. Kang N, El Mansori M, Lin X, Guittonneau F, Liao HL, Huang WD, et al. In-situ synthesis of aluminum/nano-quasicrystalline Al-Fe-Cr composite by using selective laser melting. Composites Part B: Engineering. 2018;155:382-90. https://doi.org/10.1016/j.compositesb.2018.08.108 https://www.sciencedirect.com/science/article/pii/S1359836818316135
  17. Dubois J. Properties- and applications of quasicrystals and complex metallic alloys. Chemical Society reviews. 2012;41 20:6760-77.
  18. Wolf W, Bolfarini C, Kiminami CS, Botta WJ. Recent developments on fabrication of Al-matrix composites reinforced with quasicrystals: From metastable to conventional processing. Journal of Materials Research. 2020:1-17. 10.1557/jmr.2020.292 https://www.cambridge.org/core/article/recent-developments-on-fabrication-of-almatrix-composites-reinforced-with-quasicrystals-from-metastable-to-conventional-processing/7F4D09E42BA3C28731AB053C43856631
  19. Koch CC, Whittenberger JD. Mechanical milling/alloying of intermetallics. Intermetallics. 1996;4(5):339-55. https://doi.org/10.1016/0966-9795(96)00001-5 https://www.sciencedirect.com/science/article/pii/0966979596000015
  20. Ohtsuki M, Koshikawa N, Yoda S, Tamura R, Edagawa K, Takeuchi S. Icosahedral quasicrystal in the Al–Rh–Si ternary system. Journal of Alloys and Compounds. 2002;342(1):42-4. https://doi.org/10.1016/S0925-8388(02)00130-5 https://www.sciencedirect.com/science/article/pii/S0925838802001305
  21. Deng S, Li R, Yuan T, Xie S, Zhang M, Zhou K, et al. Direct current-enhanced densification kinetics during spark plasma sintering of tungsten powder. Scripta Materialia. 2018;143:25-9. 10.1016/j.scriptamat.2017.09.009
  22. Shinohara T, Fujii T, Tohgo K, Shimamura Y. Densification process in fabrication of PSZ-Ti composites by spark plasma sintering technique. Materials Characterization. 2017;132:230-8. https://doi.org/10.1016/j.matchar.2017.08.016 https://www.sciencedirect.com/science/article/pii/S1044580317315231
  23. Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, et al. Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Advanced Engineering Materials. 2014;16. 10.1002/adem.201300409
  24. Kubota M. Properties of nano-structured pure Al produced by mechanical grinding and spark plasma sintering. Journal of Alloys and Compounds. 2007;434-435:294-7. https://doi.org/10.1016/j.jallcom.2006.08.329 https://www.sciencedirect.com/science/article/pii/S0925838806012369
  25. Trzaska Z, Couret A, Monchoux J-P. Spark plasma sintering mechanisms at the necks between TiAl powder particles. Acta Materialia. 2016;118:100-8. 10.1016/j.actamat.2016.07.043
  26. Saheb N, Iqbal Z, Khalil A, Hakeem AS, Al Aqeeli N, Laoui T, et al. Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review. Journal of Nanomaterials. 2012;2012:983470. 10.1155/2012/983470 https://doi.org/10.1155/2012/983470
  27. Li FZ, Tian LH, Li RT, Wang Y, Liu ZQ. Microstructure and wear resistance properties of Al/Al–Cu–Cr–Fe composites consolidated using spark plasma sintering. Composite Interfaces. 2020;27(5):515-27. 10.1080/09276440.2019.1655317 https://doi.org/10.1080/09276440.2019.1655317
  28. Yong X, Chang IT, Jones IP. Formation of a quasicrystalline phase in mechanically alloyed Al65Cu25Fe15. Journal of Alloys and Compounds. 2005;387(1):128-33. https://doi.org/10.1016/j.jallcom.2004.06.082 http://www.sciencedirect.com/science/article/pii/S0925838804008941
  29. Asahi N, Maki T, Matsumoto S, Sawai T. Quasicrystallization characteristics of mechanically alloyed Al65Cu20Fe15 powder. Materials Science and Engineering: A. 1994;181-182:841-4. https://doi.org/10.1016/0921-5093(94)90752-8 http://www.sciencedirect.com/science/article/pii/0921509394907528
  30. Tsai A-P, Inoue A, Masumoto T. A Stable Quasicrystal in Al-Cu-Fe System. Japanese Journal of Applied Physics. 1987;26(Part 2, No. 9):L1505-L7. 10.1143/jjap.26.l1505 http://dx.doi.org/10.1143/JJAP.26.L1505
  31. F. Faudot, A. Quivy, Y. Calvayrac, D. Gratias, M. Harmelin. About the Al–Cu–Fe icosahedral phase formation. Materials Science and Engineering. 1991:383–7.
  32. Kim B-H, Kim D, Kim W. Quasicrystalline phase formation in Al62Cu22.5Fe12.5 and Al55Cu22.5Fe12.5Be7 alloys. Journal of Materials Research - J MATER RES. 2001;16:1535-40. 10.1557/JMR.2001.0213
  33. Köster U, Liebertz H, Liu W. Plastic deformation of quasi-crystalline and crystalline phases in AlCuFe alloys. Materials Science and Engineering: A. 1994;181-182:777-80. https://doi.org/10.1016/0921-5093(94)90737-4 http://www.sciencedirect.com/science/article/pii/0921509394907374
  34. Giacometti E, Baluc N, Bonneville J, Rabier J. Microindentation of Al-Cu-Fe icosahedral quasicrystal. Scripta Materialia. 1999;41(9):989-94. https://doi.org/10.1016/S1359-6462(99)00242-0 https://www.sciencedirect.com/science/article/pii/S1359646299002420
  35. Ramond L, Bernard-Granger G, Addad A, Guizard C. Sintering of a quasi-crystalline powder using spark plasma sintering and hot-pressing. Acta Materialia. 2010;58(15):5120-8. https://doi.org/10.1016/j.actamat.2010.05.047 https://www.sciencedirect.com/science/article/pii/S1359645410003320
  36. Lu D, Celis JP, Kenzari S, Fournée V, Zhou DB. Tribological behavior of aluminum matrix composites containing complex metallic alloys AlCuFeB or AlCuFeCr particles. Wear. 2011;270(7):528-34. https://doi.org/10.1016/j.wear.2011.01.007 https://www.sciencedirect.com/science/article/pii/S0043164811000081
  37. Brien V, Khare V, Herbst F, P W, Ledeuil J-B, Weerd M-C, et al. Influence of boron content on the microstructure of sintered Al62.5-xCU25.3Fe12.2Bx alloys (x=0, 3, 5). Journal of Materials Research. 2004;19:2974-80. 10.1557/JMR.2004.0366
  38. Bilušić A, Pavuna D, Smontara A. Figure of merit of quasicrystals: the case of Al–Cu–Fe. Vacuum. 2001;61(2):345-8. https://doi.org/10.1016/S0042-207X(01)00290-1 http://www.sciencedirect.com/science/article/pii/S0042207X01002901
  39. Lityńska-Dobrzyńska L, Dutkiewicz J, Stan-Głowińska K, Wajda W, Dembinski L, Langlade C, et al. Characterization of aluminium matrix composites reinforced by Al–Cu–Fe quasicrystalline particles. Journal of Alloys and Compounds. 2015;643:S114-S8. https://doi.org/10.1016/j.jallcom.2014.11.125 https://www.sciencedirect.com/science/article/pii/S092583881402773X
  40. Sainfort P, Dubost B. COPRECIPITATION HARDENING IN Al-Li-Cu-Mg ALLOYS. Journal de Physique Colloques. 1987;48(C3):C3-407-C3-13. 10.1051/jphyscol:1987346 https://hal.archives-ouvertes.fr/jpa-00226577
  41. Tsai AP, Aoki K, Inoue A, Masumoto T. Synthesis of stable quasicrystalline particle-dispersed Al base composite alloys. Journal of Materials Research. 1993;8(1):5-7. 10.1557/JMR.1993.0005 https://doi.org/10.1557/JMR.1993.0005
  42. Amini M, Reza Rahimipour M, Ali Tayebifard S, Palizdar Y. Ultrafast synthesis of the nanostructured Al59Cu25.5Fe12.5B3 quasicrystalline and crystalline phases by high-energy ball milling: Microhardness, electrical resistivity, and solar cell absorptance studies. Advanced Powder Technology. 2020;31(10):4319-35. https://doi.org/10.1016/j.apt.2020.09.013 https://www.sciencedirect.com/science/article/pii/S0921883120304325
  43. Ali F, Scudino S, Anwar MS, Shahid RN, Srivastava VC, Uhlenwinkel V, et al. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction. Journal of Alloys and Compounds. 2014;607:274-9. https://doi.org/10.1016/j.jallcom.2014.04.086 https://www.sciencedirect.com/science/article/pii/S0925838814008998
  44. Kenzari S, P W, Curulla M, Geandier G, Fournée V, Dubois J-M. Formation and properties of Al composites reinforced by quasicrystalline AlCuFeB particles. Philosophical Magazine. 2008;88:755-66. 10.1080/14786430801955253
  45. Saiz E, Tomsia AP, Suganuma K. Wetting and strength issues at Al/α–alumina interfaces. Journal of the European Ceramic Society. 2003;23(15):2787-96. https://doi.org/10.1016/S0955-2219(03)00290-5 https://www.sciencedirect.com/science/article/pii/S0955221903002905
  46. Li RT, Wang ZY, Sun W, Hu HL, Khor KA, Wang Y, et al. Microstructure and strengthening mechanisms in the Al/Al–Cu–Cr–Fe composites consolidated using spark plasma sintering. Materials Characterization. 2019;157:109917. https://doi.org/10.1016/j.matchar.2019.109917 https://www.sciencedirect.com/science/article/pii/S1044580319315177
  47. Borgonovo C, Apelian D, Makhlouf MM. Aluminum nanocomposites for elevated temperature applications. JOM. 2011;63(2):57-64. 10.1007/s11837-011-0030-5 https://doi.org/10.1007/s11837-011-0030-5
  48. Karimzadeh F, Rastar V, Enayati MH. Thermal Stability and Mechanical Properties of Al-Al2O3 Nanocomposites Produced by Mechanical Milling and Hot-Pressing. Proceedings of the International Conference Nanomaterials: Applications and Properties. 2012;1:1-4.
  49. Peng LM, Li Z, Li H, Wang JH, Gong M. Microstructural characterization and mechanical properties of TiAl–Al2Ti4C2–Al2O3–TiC in situ composites by hot-press-aided reaction synthesis. Journal of Alloys and Compounds. 2006;414(1):100-6. https://doi.org/10.1016/j.jallcom.2005.07.024 https://www.sciencedirect.com/science/article/pii/S0925838805012302
  50. Suzuki T, Nagumo M. Synthesis of TiAl-Al2Ti4C2 Composite by Reaction Milling. Materials Science Forum. 1995;179-181:189-94. 10.4028/www.scientific.net/MSF.179-181.189 https://www.scientific.net/MSF.179-181.189
  51. Lee SM, Jung JH, Fleury E, Kim WT, Kim DH. Metal matrix composites reinforced by gas-atomised Al-Cu-Fe powders. Materials Science and Engineering: A. 2000;294-296:99-103. https://doi.org/10.1016/S0921-5093(00)01223-5 http://www.sciencedirect.com/science/article/pii/S0921509300012235