Development of a Wideband Bi-layered Mantle-Cloak for Perfect Electric Conductor Cylindrical Objects under Obliquely Incident Plane Wave

Document Type : Original Article

Authors

Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

This paper presents a mantle cloak structure to provide a wideband capability to hide a metallic cylinder over a broad span of angles of obliquely impinging plane waves. A bi-layered dielectric structure and a sheet of metasurface are used to enclose the object to be hidden. At first, the scattered field, including co- and cross-polarized components, is analytically formulated using circumferential waves for a multi-layer wrap around the cylinder. A tensor description is also applied to model the impedance of the metasurface for TE and TM waves. Then, a metasurface made of rectangular patches is considered, and its related parameters are optimized to hide a perfect electric conductor (PEC) cylinder. Moreover, a double-layered mantle cloak is presented and numerically investigated using a software package to enhance its cloaking bandwidth. The numerical results show that the clocking bandwidth is enhanced by up to 33% compared to that of a single-layered structure.

Keywords

Main Subjects


  1. Schurig, D., Mock, J.J., Justice, B., Cummer, S.A., Pendry, J.B., Starr, A.F. and Smith, D.R., "Metamaterial electromagnetic cloak at microwave frequencies", Science, Vol. 314, No. 5801, (2006), 977-980, DOI: 10.1126/science.1133628.
  2. Alù, A. and Engheta, N., "Achieving transparency with plasmonic and metamaterial coatings", Physical Review E, Vol. 72, No. 1, (2005), 016623, DOI: 10.1103/ PhysRevE. 72.016623.
  3. Alù, A. and Engheta, N., "Plasmonic cloaks", in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, Springer. (2009), 37-47, DOI: 10.1007/978-1-4020-9407-1_3.
  4. Pendry, J. B., Schurig, D. and Smith, D. R., "Controlling electromagnetic fields", Science, Vol. 312, No. 5781, (2006), 1780-1782, DOI: 10.1126/science.1125907 10.1126/science.1125907.
  5. Leonhardt, U., "Optical conformal mapping", Science, Vol. 312, No. 5781, (2006), 1777-1780, DOI: 10.1126/science.1126493.
  6. Padooru, Y.R., Yakovlev, A.B., Chen, P.-Y. and Alu, A., "Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays", Journal of Applied Physics, Vol. 112, No. 3, (2012), 034907, DOI: 10.1063/1.4745888.
  7. Ergin, T., Stenger, N., Brenner, P., Pendry, J.B. and Wegener, M., "Three-dimensional invisibility cloak at optical wavelengths", Science, Vol. 328, No. 5976, (2010), 337-339, DOI: 10.1126/science.1186351.
  8. Valentine, J., Li, J., Zentgraf, T., Bartal, G. and Zhang, X., "An optical cloak made of dielectrics", Nature Materials, Vol. 8, No. 7, (2009), 568-571, DOI: 10.1038/nmat2461.
  9. Alù, A. and Engheta, N., "Cloaking a sensor", Physical Review letters, Vol. 102, No. 23, (2009), 233901, DOI: 10.1103/PhysRevLett.102.233901.
  10. Alù, A. and Engheta, N., "Multifrequency optical invisibility cloak with layered plasmonic shells", Physical Review Letters, Vol. 100, No. 11, (2008), 113901, DOI: 10.1103/PhysRevLett.100.113901.
  11. Alu, A. and Engheta, N., "Plasmonic and metamaterial cloaking: Physical mechanisms and potentials", Journal of Optics A: Pure and Applied Optics, Vol. 10, No. 9, (2008), 093002, DOI: 10.1088/1464-4258/10/9/093002.
  12. Milton, G.W. and Nicorovici, N.-A.P., "On the cloaking effects associated with anomalous localized resonance", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 462, No. 2074, (2006), 3027-3059, DOI: 10.1098/rspa.2006.1715.
  13. Yuste, P., Rius, J. M., Romeu, J., Blanch, S., Heldring, A. and Ubeda, E., "A microwave invisibility cloak: The design, simulation, and measurement of a simple and effective frequency-selective surface-based mantle cloak", IEEE Antennas and Propagation Magazine, Vol. 60, No. 4, (2018), 49-59, DOI: 10.1109/MAP.2018.2839903.
  14. Alù, A., "Mantle cloak: Invisibility induced by a surface", Physical Review B, Vol. 80, No. 24, (2009), 245115.
  15. Chen, P.-Y. and Alu, A., "Mantle cloaking using thin patterned metasurfaces", Physical Review B, Vol. 84, No. 20, (2011), 205110, DOI: 10.1103/PhysRevB.80.245115.
  16. Chen, P.-Y., Montione, F. and Alu, A., "Suppressing the electromagnetic scattering with a helical mantle cloak", IEEE Antennas and Wireless Propagation Letters, Vol. 10, (2011), 1598-1601, DOI: 10.1109/LAWP. 2011. 2179001.
  17. Monti, A., Toscano, A. and Bilotti, F., "Metasurface mantle cloak for antenna applications", in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, IEEE. (2012), 1-2, DOI: 10.1109/APS.2012. 6348711.
  18. Soric, J.C., Alù, A., Kerkhoff, A. and Rainwater, D., "Experimental demonstration of a conformal mantle cloak for radio-waves", in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, IEEE. (2012), 1-2, DOI: 10.1109/APS.2012.6349400.
  19. Monti, A., Bilotti, F., Toscano, A., Soric, J. and Alù, A., "Mantle cloak devices for TE and TM polarizations", in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), IEEE. (2013), 324-325, DOI: 10.1109/APS.2013.6710823.
  20. Bernety, H. M. and Yakovlev, A. B., "Metasurface cloaks for dielectric and metallic elliptical cylinders and strips", in 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA), IEEE. (2014), 496-499, DOI: 10.1109/ICEAA.2014.6903905.
  21. Moosaei, A. and Neshati, Mohammad H., "Design investigation of mantle-cloak for a PEC cylindrical object under oblique incidence of TM and TE waves", AEU-International Journal of Electronics and Communications, Vol. 137, (2021), 153801, DOI: 10.1016/j.aeue.2021.153801.
  22. Balanis, C., "Advanced engineering electromagnetics", John Wiley & Sons,, NewYork,  1989.
  23. Moosaei, A. and Neshati, Mohammad H., "Wide-band cloaking of finite length pec cylindrical objects under oblique incidence using multi-layer mantle cloak", in 2021 29th Iranian Conference on Electrical Engineering (ICEE), IEEE. (2021), 886-890, DOI: 10.1109/ICEE52715.2021. 9544464.
  24. Hamzavi-Zarghani, Z., Yahaghi, A. and Matekovits, L., "Electrically tunable mantle cloaking utilizing graphene metasurface for oblique incidence", AEU-International Journal of Electronics and Communications, Vol. 116, (2020), 153080, DOI: 10.1016/j.aeue.2020.153080.
  25. Pawar, S., Bernety, H.M. and Yakovlev, A.B., "Cloaking of cylindrical objects with graphene-metasurface structures for low-terahertz applications", in 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), IEEE. (2022), 1366-1367, DOI: 10.1109/AP-S/USNC-URSI47032.2022. 9886308.
  26. Bilotti, F., Tricarico, S. and Vegni, L., "Plasmonic metamaterial cloaking at optical frequencies", IEEE Transactions on Nanotechnology, Vol. 9, No. 1, (2009), 55-61, DOI: 10.1109/TNANO.2009.2025945.
  27. Studio, C.M., "CST microwave studio", CST Studio Suite, (2020).
  28. Osipov, A. V. and Tretyakov, S. A., "Modern electromagnetic scattering theory with applications", John Wiley & Sons, NewYork, 2017.
  29. S. Vellucci et al., "On the use of nonlinear metasurfaces for circumventing fundamental limits of mantle cloaking for antennas," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, (2021), 5048-5053, DOI: 10.1109/TAP.2021.3061010.
  30. H. Younesiraad, Z. Hamzavi-Zarghani, and L. Matekovits, "Invisibility utilizing Huygens’ metasurface based on mantle cloak and scattering suppression phenomen," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, (2021), 5181-5186, DOI: 10.1109/TAP.2021.3060022.
  31. V. Pratik, M. Singh Bisht, and K. Vaibhav Srivastava, "Improving performance of mantle cloak for electrically large PEC cylinders by reducing higher-order scattering coefficients," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 9, (2021), 1176-1191, DOI: 10. 1080/09205071.2021.1872042.
  32. M. Bisht, V. P. Vinubhai, and K. V. Srivastava, "Analysis and realization of a wideband mantle cloak with improved cloaking performance," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 10, (2020), 1386-1399, DOI: 10.1080/09205071.2020.1726213