Development of Temperature-strain Prediction Based on Deformation-induced Heating Mechanism in SCM440 Surface Cracked Shaft under Ultrasonic Excitation

Document Type : Original Article

Authors

Material Manufacturing and Surface Engineering Research Center (MaSE), The Sirindhron International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, Thailand

Abstract

The mechanisms behind temperature and material deformation in vibrothermography remain questionable, presenting a gap in understanding. This study investigates the deformation-induced mechanism, focusing solely on the heat generation associated with strain development. Both experimental and simulation approaches are incorporated. The experimental segment explores the temperature-strain relationship of SCM440 material, commonly used for rotating shafts. This behavior is examined through the connection between temperature change and material deformation during a uniaxial tensile test. Results indicate that temperature change and distribution can be predicted based on plastic strain development. Finite Element Method (FEM) simulation is utilized to model the excitation of a shaft with and without an elliptic surface crack. Various cracked shaft configurations are investigated, revealing distinct strain generation and distribution patterns. High strain alteration is notably observed around the crack tips, enabling the detection of shaft discontinuity. Consequently, a temperature prediction technique is developed to estimate temperature based on strain alteration during deformation. Adequate excitation power and the use of a high-sensitivity IR camera are recommended for the effective application of the temperature prediction technique. Additionally, this study provides insights into understanding the utility and limitations of vibrothermography for inspecting engineering component damage based on experimental temperature-strain relationships and computational predictions of strain distribution in cracked shafts under excitation. These findings offer guidance for engineering applications and future research endeavors.

Graphical Abstract

Development of Temperature-strain Prediction Based on Deformation-induced Heating Mechanism in SCM440 Surface Cracked Shaft under Ultrasonic Excitation

Keywords

Main Subjects


  1. Morbidini M, Cawley P, Barden T, Almond D, Duffour P. Prediction of the thermosonic signal from fatigue cracks in metals using vibration damping measurements. Journal of Applied Physics. 2006;100(10). 10.1063/1.2361091
  2. Mendioroz A, Martínez K, Celorrio R, Salazar A. Characterizing the shape and heat production of open vertical cracks in burst vibrothermography experiments. NDT & E International. 2019;102:234-43. 10.1016/j.ndteint.2018.12.006
  3. Reifsnider K, Henneke EG, Stinchcomb W. The mechanics of vibrothermography. Mechanics of nondestructive testing. 1980:249-76. 10.1007/978-1-4684-3857-4_12
  4. Favro L, Han X, Ouyang Z, Sun G, Sui H, Thomas R. Infrared imaging of defects heated by a sonic pulse. Review of scientific instruments. 2000;71(6):2418-21. 10.1063/1.1150630
  5. Shih Y-S, Chen J-J. Analysis of fatigue crack growth on a cracked shaft. International Journal of Fatigue. 1997;6(19):477-85. https://api.semanticscholar.org/CorpusID:136058376
  6. Chowdhury P, Sehitoglu H. Mechanisms of fatigue crack growth–a critical digest of theoretical developments. Fatigue & Fracture of Engineering Materials & Structures. 2016;39(6):652-74. 10.1111/ffe.12392
  7. Stephens RI, Fatemi A, Stephens RR, Fuchs HO. Metal fatigue in engineering: John Wiley & Sons; 2000.
  8. Zangeneh S, Ketabchi M, Kalaki A. Fracture failure analysis of AISI 304L stainless steel shaft. Engineering Failure Analysis. 2014;36:155-65. 10.1016/j.engfailanal.2013.09.013
  9. Zhao L-H, Xing Q-K, Wang J-Y, Li S-L, Zheng S-L. Failure and root cause analysis of vehicle drive shaft. Engineering Failure Analysis. 2019;99:225-34. 10.1016/j.engfailanal.2019.02.025
  10. Chatterton S, Pennacchi P, Vania A, Rubio P. Analysis of the periodic breathing of a transverse annular crack propagated in a real rotating machine. Engineering Failure Analysis. 2019;99:126-40. 10.1016/j.engfailanal.2019.02.029
  11. Mayton D, Spencer F, Alvarez C, editors. Characterizing the effects of sonic IR variables on turbine disk inspection using a design of experiments approach. AIP Conference Proceedings; 2005: American Institute of Physics. 10.1063/1.1916736
  12. Holland SD. Thermographic signal reconstruction for vibrothermography. Infrared Physics & Technology. 2011;54(6):503-11. 10.1016/j.infrared.2011.07.004
  13. Gao C, Meeker WQ, Mayton D. Detecting cracks in aircraft engine fan blades using vibrothermography nondestructive evaluation. Reliability Engineering & System Safety. 2014;131:229-35. 10.1016/j.ress.2014.05.009
  14. Szwedo M, Pieczonka L, Uhl T, editors. Application of vibrothermography in nondestructive testing of structures. 6th European Workshop on Structural Health Monitoring; 2012.
  15. DiMambro J, Ashbaugh D, Nelson CL, Spencer FW, editors. Sonic infrared (IR) imaging and fluorescent penetrant inspection probability of detection (POD) comparison. AIP Conference Proceedings; 2007: American Institute of Physics. 10.1063/1.2718008
  16. Jia Y, Tang L, Xu B, Zhang S. Crack detection in concrete parts using vibrothermography. Journal of Nondestructive Evaluation. 2019;38:1-11. 10.1007/s10921-019-0562-0
  17. Luong MP. Infrared thermovision of damage processes in concrete and rock. Engineering Fracture Mechanics. 1990;35(1-3):291-301. 10.1016/0013-7944(90)90207-W
  18. Tian G, Zhang W, Jin GF, Zhu L, Yang ZW. Detection of Ceramic Material Crack Defect Based on the Ultrasonic Infrared Thermal Wave Technique. Advanced Materials Research. 2013;791:949-53. 10.4028/www.scientific.net/AMR.791-793.949
  19. Vaddi JS, Holland SD, Kessler MR. Loss modulus measurement of a viscoelastic polymer at acoustic and ultrasonic frequencies using vibrothermography. Measurement. 2021;168:108311. 10.1016/j.measurement.2020.108311
  20. Katunin A, Wronkowicz-Katunin A, Wachla D. Impact damage assessment in polymer matrix composites using self-heating based vibrothermography. Composite Structures. 2019;214:214-26. 10.1016/j.compstruct.2019.02.003
  21. Bolu G, Gachagan A, Pierce G, Harvey G. Reliable thermosonic inspection of aero engine turbine blades. Insight-Non-Destructive Testing and Condition Monitoring. 2010;52(9):488-93. 10.1784/insi.2010.52.9.488
  22. Morbidini M, Cawley P. The detectability of cracks using sonic IR. Journal of Applied Physics. 2009;105(9). 10.1063/1.3125444
  23. Ibarra-Castanedo C, Genest M, Guibert S, Piau J-M, Maldague XP, Bendada A, editors. Inspection of aerospace materials by pulsed thermography, lock-in thermography, and vibrothermography: a comparative study. Thermosense XXIX; 2007: SPIE. 10.1117/12.720097
  24. Glass III SW. Guide to Nondestructive Evaluation Techniques. Nondestructive Evaluation of Materials: ASM International; 2018. p. 3-7.
  25. Renshaw J, Chen JC, Holland SD, Thompson RB. The sources of heat generation in vibrothermography. Ndt & E International. 2011;44(8):736-9. 10.1016/j.ndteint.2011.07.012
  26. Holland SD, Uhl C, Ouyang Z, Bantel T, Li M, Meeker WQ, et al. Quantifying the vibrothermographic effect. NDT & E International. 2011;44(8):775-82. 10.1016/j.ndteint.2011.07.006
  27. Mabrouki F, Thomas M, Genest M, Fahr A. Frictional heating model for efficient use of vibrothermography. NDT & E International. 2009;42(5):345-52. 10.1016/j.ndteint.2009.01.012
  28. Renshaw J, Holland SD, Thompson RB. Measurement of crack opening stresses and crack closure stress profiles from heat generation in vibrating cracks. Applied Physics Letters. 2008;93(8). 10.1063/1.2976310
  29. Rizi AS, Hedayatrasa S, Maldague X, Vukhanh T. FEM modeling of ultrasonic vibrothermography of a damaged plate and qualitative study of heating mechanisms. Infrared Physics & Technology. 2013;61:101-10. 10.1016/j.infrared.2013.07.011
  30. De Cazenove J, Rade D, De Lima A, Araújo C. A numerical and experimental investigation on self-heating effects in viscoelastic dampers. Mechanical Systems and Signal Processing. 2012;27:433-45. 10.1016/j.ymssp.2011.05.004
  31. Singh V, Sangle K. Analysis of vertically oriented coupled shear wall interconnected with coupling beams. HighTech and Innovation Journal. 2022;3(2):230-42. 10.28991/HIJ-2022-03-02-010
  32. El Yassari S, El Ghoulbzouri A. Numerical simulation of fiber-reinforced concrete under cyclic loading using extended finite element method and concrete damaged plasticity. International Journal of Engineering, Transactions A: Basics. 2023;36(10):1815-26. 10.5829/IJE.2023.36.10A.08
  33. Talouti S, Benzerga D, Abdelkader H. Numerical Investigations of Damage Behaviour at the Weld/Base Metal Interface. International Journal of Engineering, Transactions C: Aspects. 2022;35(12):2337-43. 10.5829/IJE.2022.35.12C.09
  34. Gholami P, Kouchakzadeh MA, Farsi M. A continuum damage mechanics-based piecewise fatigue damage model for fatigue life prediction of fiber-reinforced laminated composites. International Journal of Engineering, Transactions AC: Aspects. 2021;34(6):1512-22. 10.5829/IJE.2021.34.06C.15
  35. Salarvand A, Poursaiedi E, Azizpour A. Probability Approach for Prediction of Pitting Corrosion Fatigue Life of Custom 450 Steel. International Journal of Engineering, Transactions A: Basics. 2018;31(10):1773-81. 10.5829/IJE.2018.31.10A.21
  36. Boussalih F, Fedaoui K, Zarza T. Chaboche Model for Fatigue by Ratcheting Phenomena of Austenitic Stainless Steel under Biaxial Sinusoidal Loading. Civil Engineering Journal. 2022;8(3):505-18. 10.28991/CEJ-2022-08-03-07
  37. Cuong DQ, Chinh VD. Estimation of Overall Fatigue Life of Jack-up Leg Structure. Civil Engineering Journal. 2022;8(03). 10.28991/CEJ-2022-08-03-06
  38. Jeong J-I, Kim J-H, Choi S-G, Cho YT, Kim C-K, Lee H. Mechanical properties of white metal on scm440 alloy steel by laser cladding treatment. Applied Sciences. 2021;11(6):2836. 10.3390/app11062836
  39. Kapoor R, Nemat-Nasser S. Determination of temperature rise during high strain rate deformation. Mechanics of materials. 1998;27(1):1-12. 10.1016/S0167-6636(97)00036-7
  40. Lamboul B, Passilly F, Roche J-M, Balageas D, editors. Ultrasonic vibrothermography using low-power actuators: An impact damage detection case study. AIP Conference Proceedings; 2015: American Institute of Physics. 10.1063/1.4914626
  41. Xu C, Xie J, Zhang W, Kong Q, Chen G, Song G. Experimental investigation on the detection of multiple surface cracks using vibrothermography with a low-power piezoceramic actuator. Sensors. 2017;17(12):2705. 10.3390/s17122705
  42. Liu P, Xu C, Zhang Y, Qin Y, Xu Y, Xie J, et al. Low-power vibrothermography detection technique for surface cracks on composite sucker rod. Smart Materials and Structures. 2023;32(3):035034. 10.1088/1361-665X/acb979
  43. Anderson TL. Fracture mechanics: fundamentals and applications: CRC press; 2017.
  44. Tada H, Paris P, Irwin G. The stress analysis of cracks handbook, Del Research Corporation, St. Louis, Missouri. 1973.
  45. Abbasnejad A, Moradi G. Frictional Strain Hardening-softening in Experimental and Numerical Investigation of Arching Effect. International Journal of Engineering, Transactions B: Applications. 2015;28(2):180-9. 10.5829/idosi.ije.2015.28.02b.03
  46. Shahraini SI, Kadkhodayan M. Ratcheting Analysis of Steel Plate under Cycling Loading using Dynamic Relaxation Method Experimentally Validated. International Journal of Engineering, Transactions C: Aspects. 2021;34(6):1530-6. 10.5829/ije.2021.34.06c.17
  47. McClung R, Sehitoglu H. On the finite element analysis of fatigue crack closure—1. Basic modeling issues. Engineering fracture mechanics. 1989;33(2):237-52. 10.1016/0013-7944(89)90027-1
  48. De-Andrés A, Pérez J, Ortiz M. Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading. International Journal of Solids and Structures. 1999;36(15):2231-58. 10.1016/S0020-7683(98)00059-6
  49. Rigby S, Tyas A, Bennett T. Elastic–plastic response of plates subjected to cleared blast loads. International Journal of Impact Engineering. 2014;66:37-47. 10.1016/j.ijimpeng.2013.12.006
  50. Shih Y-S, Chen J-J. The stress intensity factor study of an elliptical cracked shaft. Nuclear Engineering and design. 2002;214(1-2):137-45. 10.1016/S0029-5493(02)00022-5
  51. Rice JR, Rosengren G. Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids. 1968;16(1):1-12. 10.1016/0022-5096(68)90013-6
  52. Dong P, Pan J. Elastic-plastic analysis of cracks in pressure-sensitive materials. International journal of solids and structures. 1991;28(9):1113-27. 10.1016/0020-7683(91)90106-P
  53. Xia L, Wang T, Shih C. Higher-order analysis of crack tip fields in elastic power-law hardening materials. Journal of the Mechanics and Physics of Solids. 1993;41(4):665-87. 10.1016/0022-5096(93)90022-8
  54. Nikishkov G, Matvienko YG. Elastic–plastic constraint parameter A for test specimens with thickness variation. Fatigue & Fracture of Engineering Materials & Structures. 2016;39(8):939-49. 10.1111/ffe.12390
  55. El Arem S. On the mechanics of beams and shafts with cracks: A standard and generic approach. European Journal of Mechanics-A/Solids. 2021;85:104088. 10.1016/j.euromechsol.2020.104088
  56. Liu Y, Glass G. Effects of mesh density on finite element analysis. SAE Technical Paper; 2013. Report No.: 0148-7191.
  57. Bhalerao GN, Patil AA, Waghulde KB, Desai S. Dynamic analysis of rotor system with slant cracked shaft. Materials Today: Proceedings. 2021;44:4268-81. 10.1016/j.matpr.2020.10.544
  58. Lap-Arparat P, Tuchinda K. Computational Study of Excitation Controlling Parameters Effect on Uniform Beam Deformation under Vibration. International Journal of Engineering, Transactions A: Basics. 2023;36(1):60-70. 10.5829/IJE.2023.36.01A.08
  59. Carpinteri A. Shape change of surface cracks in round bars under cyclic axial loading. International Journal of Fatigue. 1993;15(1):21-6. 10.1016/0142-1123(93)90072-X
  60. Miedlar PC, Berens AP, Gunderson A, Gallagher J. Analysis and support initiative for structural technology (ASIST) delivery order 0016: USAF damage tolerant design handbook: guidelines for the analysis and design of damage tolerant aircraft structures. University of Dayton Research Institute: Dayton, OH, USA. 2002.
  61. Shin C, Cai C. Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending. International Journal of fracture. 2004;129:239-64. 10.1023/B:FRAC.0000047784.23236.7d
  62. Astiz M. An incompatible singular elastic element for two-and three-dimensional crack problems. International Journal of Fracture. 1986;31:105-24. 10.1007/BF00018917
  63. Couroneau N, Royer J. Simplified model for the fatigue growth analysis of surface cracks in round bars under mode I. International Journal of Fatigue. 1998;20(10):711-8. 10.1016/S0142-1123(98)00037-1
  64. Wahrhaftig AdM, Magalhães KMM. Bifurcation Analysis of Columns of Composite Materials with Thermal Variation. Materials Research. 2021;24. 10.1590/1980-5373-MR-2021-0266