Experimental Investigation and Thermodynamic Modeling of Zn+2 and Ni+2 Extraction from Zn Plant Residue using D2EHPA

Document Type : Original Article


Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran


Zinc plant filter cake contains valuable metals that can be reused as a source for obtaining these metals. This study  describes an experimental two stage study on the extraction of zinc and nickel from waste zinc filter cake which includes acid leaching of zinc filter cake followed by organic phase aided extraction of metals from the leaching solution. To determine the optimum leaching condition a comprehensive study of the recovery of chemical elements from spent plant residues was experimentally studied at different levels of acid concentrations at different temperatures while measuring chemical elements concentration with respect to time. Experimental results showed that 99% recovery of Ni2+, Zn2+ and 89% recovery of Pb2+ can be achieved at following optimum conditions: 2M nitric acid, T= 358.15 K after 1.5 h of acid leaching at S/L=1/10. Then, the extraction of Zn2+, Ni2+, and Pb2+ was carried out by di-(2-ethylhexyl) phosphoric acid (D2EHPA) that was diluted with kerosene in equal phase ratio and the effect of extractant concentration and pH was studied at T = 298.15 K. Results showed that an increase in pH and extractant concentration can greatly increase zinc and nickel extraction to a maximum achievable amount of 95% and 90 % for Zn2+ and Ni2+, respectively by 25 (v/v%) D2EHPA at pH = 5.5 and organic to aqueous phase ratio (O/A) = 1/1. For modeling of equilibrium concentrations in organic and aqueous phases and activity coefficients calculation, Electrolyte-UNIQUAC-NRF, UNIQUAC-NRF, NRTL and NRTL-based local composition models were used. After that, adjusted parameters were successfully used for calculation of the equilibrium constant of the unknown parameters and the extraction reaction. The obtained results of thermodynamic modeling were in well agreement with the experimental data.


Main Subjects

  1. Kashyap, V. and Taylor, P., "Extraction and recovery of zinc and indium from residue rich in zinc ferrite", Minerals Engineering, Vol. 176, (2022), 107364. doi: 10.1016/j.mineng.2021.107364.
  2. Kani, O.S.M., Azizitorghabeh, A. and Rashchi, F., "Recovery of zn (ii), mn (ii) and co (ii) from the zinc plant residue using the solvent extraction with cyanex 302 and d2ehpa/tbp: Stoichiometry and structural studies", Minerals Engineering, Vol. 169, (2021), 106944. doi: 10.1016/j.mineng.2021.106944.
  3. Li, S., Yang, J., Wang, J., Han, B., Zhang, H., Yang, S. and Chen, Y., "Efficient zinc extraction with novel phenyl phosphate ptopp in sulfuric acid system", Journal of Cleaner Production, Vol. 417, (2023), 138052. doi: 10.1016/j.jclepro.2023.138052.
  4. Asadollahzadeh, M., Shakib, B., Torab-Mostaedi, M. and Outokesh, M., "Extraction of molybdenum (vi) and vanadium (v) from nitrate solutions using coupling of acid and solvating extractants (research note)", International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 10, (2019), 1366-1371. doi: 10.5829/IJE.2019.32.10A.05
  5. Zhang, K., Qiu, L., Tao, J., Zhong, X., Lin, Z., Wang, R. and Liu, Z., "Recovery of gallium from leach solutions of zinc refinery residues by stepwise solvent extraction with n235 and cyanex 272", Hydrometallurgy, Vol. 205, (2021), 105722. doi: 10.1016/j.hydromet.2021.105722.
  6. Liu, W., Li, J., Zheng, J., Song, Y., Shi, Z., Lin, Z. and Chai, L., "Different pathways for cr (iii) oxidation: Implications for cr (vi) reoccurrence in reduced chromite ore processing residue", Environmental Science & Technology, Vol. 54, No. 19, (2020), 11971-11979. doi: 10.1021/acs.est.0c01855  
  7. Igosawa, T., Matsumiya, M. and Sasaki, Y., "Recovery of tungsten compounds from spent tungstophosphate catalyst using leaching, solvent extraction with phosphonium-based ionic liquids and precipitation", Hydrometallurgy, Vol. 208, (2022), 105803. doi: 10.1016/j.hydromet.2021.105803.
  8. Yuxin, Z., Ting, S., Hongyu, C., Ying, Z., Zhi, G., Suiyi, Z., Xinfeng, X., Hong, Z., Yidi, G. and Yang, H., "Stepwise recycling of fe, cu, zn and ni from real electroplating sludge via coupled acidic leaching and hydrothermal and extraction routes", Environmental Research, Vol. 216, (2023), 114462. doi: 10.1016/j.envres.2022.114462
  9. Ahmadi, A., Sheibani, S., Mokmeli, M., Khorasani, S. and Yaghoobi, N., "Factors affecting the cathode edge nodulation in copper electrorefining process", International Journal of Engineering, Transactions C: Aspects, Vol. 35, No. 12, (2022), 2370-2376. doi: 10.5829/IJE.2022.35.12C.13.
  10. Hosseinzadeh, M. and Alizadeh, M., "Improvement of the solvent extraction of rhenium from molybdenite roasting dust leaching solution using counter-current extraction by a mixer-settler extractor", International Journal of Engineering, Transactions A: Basics, Vol. 27, No. 4, (2014), 651-658. doi: 10.5829/idosi.ije.2014.27.04a.17.
  11. Mohammadzadeh, M., Bagheri, H. and Ghader, S., "Study on extraction and separation of ni and zn using [bmim][pf6] il as selective extractant from nitric acid solution obtained from zinc plant residue leaching", Arabian Journal of Chemistry, Vol. 13, No. 6, (2020), 5821-5831. doi: 10.1016/j.arabjc.2020.04.019.
  12. Suliman, S.S., Othman, N., Noah, N.F.M. and Kahar, I.N.S., "Extraction and enrichment of zinc from chloride media using emulsion liquid membrane: Emulsion stability and demulsification via heating-ultrasonic method", Journal of Molecular Liquids, Vol. 374, (2023), 121261. doi: 10.1016/j.molliq.2023.121261.
  13. Asadollahzadeh, M., Torkaman, R. and Torab-Mostaedi, M., "Optimization of green technique develop for europium (iii) extraction by using phosphonium ionic liquid and central composite design approach", International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 2, (2021), 508-516. doi: 10.5829/IJE.2021.34.02B.24.
  14. Santanilla, A.J.M., Aliprandini, P., Benvenuti, J., Tenorio, J.A.S. and Espinosa, D.C.R., "Structure investigation for nickel and cobalt complexes formed during solvent extraction with the extractants cyanex 272, versatic 10 and their mixtures", Minerals Engineering, Vol. 160, (2021), 106691. doi: 10.1016/j.mineng.2020.106691.
  15. Mahmoudi, A., Shakibania, S., Rezaee, S. and Mokmeli, M., "Effect of the chloride content of seawater on the copper solvent extraction using acorga m5774 and lix 984n extractants", Separation and Purification Technology, Vol. 251, (2020), 117394. doi: 10.1016/j.seppur.2020.117394.
  16. Barnard, K.R., Zeng, L. and Shiers, D.W., "Stoichiometry of the nickel complex formed with lix 63 hydroxyoxime under acidic chloride conditions", Solvent Extraction and Ion Exchange, Vol. 40, No. 5, (2022), 477-492. doi: 10.1080/07366299.2021.1992891.
  17. Odegbemi, F., Idowu, G.A. and Adebayo, A.O., "Nickel recovery from spent nickel-metal hydride batteries using lix-84i-impregnated activated charcoal", Environmental Nanotechnology, Monitoring & Management, Vol. 15, (2021), 100452. doi: 10.1016/j.enmm.2021.100452.
  18. Valeev, D., Shoppert, A., Dogadkin, D., Romashova, T., Kuz'mina, T. and Salazar-Concha, C., "Extraction of al and rare earth elements via high-pressure leaching of boehmite-kaolinite bauxite using nh4hso4 and h2so4", Hydrometallurgy, Vol. 215, No., (2023), 105994. doi: 10.1016/j.hydromet.2022.105994.
  19. Li, C., Jia, Y., Lu, X. and Chen, H., "Transport of zn (ⅱ) through matrix enhanced polymer inclusion membrane containing oha and d2ehpa", Chemical Engineering Journal, Vol. 452, (2023), 139288. doi: 10.1016/j.cej.2022.139288.
  20. Hou, H., Shao, S., Ma, B., Li, X., Shi, S., Chen, Y. and Wang, C., "Sustainable process for valuable-metal recovery from circulating fluidized bed fly ash through nitric acid pressure leaching", Journal of Cleaner Production, Vol. 360, (2022), 132212. doi: 10.1016/j.jclepro.2022.132212.
  21. Martins, J.M.A., Guimaraes, A.S., Dutra, A.J.B. and Mansur, M.B., "Hydrometallurgical separation of zinc and copper from waste brass ashes using solvent extraction with d2ehpa", Journal of Materials Research and Technology, Vol. 9, No. 2, (2020), 2319-2330. doi: 10.1016/j.jmrt.2019.12.063.
  22. Azizi, A., Nozhati, R.A. and Sillanpää, M., "Solvent extraction of copper and zinc from sulfate leach solution derived from a porcelain stone tailings sample with chemorex cp-150 and d2ehpa", Journal of Sustainable Metallurgy, Vol. 6, (2020), 250-258. doi: 10.1007/s40831-020-00271-w.
  23. Hosseini, T., Mostoufi, N., Daneshpayeh, M. and Rashchi, F., "Modeling and optimization of synergistic effect of cyanex 302 and d2ehpa on separation of zinc and manganese", Hydrometallurgy, Vol. 105, No. 3-4, (2011), 277-283. doi: 10.1016/j.hydromet.2010.10.015
  24. Babakhani, A., Rashchi, F., Zakeri, A. and Vahidi, E., "Selective separation of nickel and cadmium from sulfate solutions of spent nickel–cadmium batteries using mixtures of d2ehpa and cyanex 302", Journal of Power Sources, Vol. 247, (2014), 127-133. doi: 10.1016/j.jpowsour.2013.08.063.
  25. Innocenzi, V. and Veglio, F., "Separation of manganese, zinc and nickel from leaching solution of nickel-metal hydride spent batteries by solvent extraction", Hydrometallurgy, Vol. 129, (2012), 50-58. doi: 10.1016/j.hydromet.2012.08.003.
  26. Bagheri, H., Karimi, N., Dan, S., Notej, B. and Ghader, S., "Ionic liquid excess molar volume prediction: A conceptual comparison", Journal of Molecular Liquids, Vol. 336, (2021), 116581. doi: 10.1016/j.molliq.2021.116581.
  27. Bagheri, H., Hashemipour, H., Ghalandari, V. and Ghader, S., "Numerical solution of particle size distribution equation: Rapid expansion of supercritical solution (ress) process", Particuology, Vol. 57, (2021), 201-213. doi: 10.1016/j.partic.2020.12.011.
  28. Mokhtari, A., Bagheri, H., Ghazvini, M. and Ghader, S., "New mathematical modeling of temperature-based properties of ionic liquids mixture: Comparison between semi-empirical equation and equation of state", Chemical Engineering Research and Design, Vol. 177, (2022), 331-353. doi: 10.1016/j.cherd.2021.10.039.
  29. Maraki, M., Tagimalek, H., Azargoman, M., Khatami, H. and Mahmoodi, M., "Experimental investigation and statistical modeling of the effective parameters in charpy impact test on az31 magnesium alloy with v-shape groove using taguchi method", International Journal of Engineering, Transactions C: ASpects,, Vol. 33, No. 12, (2020), 2521-2529. doi: 10.5829/IJE.2020.33.12C.13.
  30. Iloeje, C.O., Jové Colón, C.F., Cresko, J. and Graziano, D.J., "Gibbs energy minimization model for solvent extraction with application to rare-earths recovery", Environmental Science & Technology, Vol. 53, No. 13, (2019), 7736-7745. doi: 10.1021/acs.est.9b01718
  31. Razavi, S.M., Haghtalab, A. and Khanchi, A.R., "Thermodynamic modeling of the solvent extraction equilibrium for the recovery of vanadium (v) from acidic sulfate solutions using di-(2-ethylhexyl) phosphoric acid", Fluid Phase Equilibria, Vol. 474, (2018), 20-31. doi: 10.1016/j.fluid.2018.07.007.
  32. Razavi, S.M., "A new nrtl-based local composition model for thermodynamic modeling of electrolyte solutions", The Journal of Chemical Thermodynamics, Vol. 161, (2021), 106534. doi: 10.1016/j.jct.2021.106534.
  33. Liu, F., Ning, P.-G., Cao, H.-B. and Zhang, Y., "Measurement and modeling for vanadium extraction from the (navo3+ h2so4+ h2o) system by primary amine n1923", The Journal of Chemical Thermodynamics, Vol. 80, (2015), 13-21. doi: 10.1016/j.jct.2021.106534.
  34. Aman-Pommier, F. and Jallut, C., "Solubility of diazepam in water+ tert-butyl alcohol solvent mixtures: Part 2. Correlation using scatchard-hildebrand and combined scatchard-hildebrand/flory-huggins excess gibbs energy models", Fluid Phase Equilibria, Vol. 458, (2018), 84-101. doi: 10.1016/j.jct.2021.106534.
  35. Mörters, M. and Bart, H.-J., "Extraction equilibria of zinc with bis (2-ethylhexyl) phosphoric acid", Journal of Chemical & Engineering Data, Vol. 45, No. 1, (2000), 82-85. doi: 10.1021/je990200u.
  36. Shi, D., Cui, B., Li, L., Xu, M., Zhang, Y., Peng, X., Zhang, L., Song, F. and Ji, L., "Removal of calcium and magnesium from lithium concentrated solution by solvent extraction method using d2ehpa", Desalination, Vol. 479, (2020), 114306. doi: 10.1016/j.desal.2019.114306.
  37. Tanong, K., Tran, L.-H., Mercier, G. and Blais, J.-F., "Recovery of zn (ii), mn (ii), cd (ii) and ni (ii) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods", Journal of Cleaner Production, Vol. 148, (2017), 233-244. doi: 10.1016/j.jclepro.2017.01.158.
  38. Babakhani, A. and Sartaj, M., "Removal of cadmium (ii) from aqueous solution using tripolyphosphate cross-linked chitosan", Journal of Environmental Chemical Engineering, Vol. 8, No. 4, (2020), 103842. doi: 10.1016/j.jece.2020.103842.
  39. Pitzer, K.S. and Silvester, L.F., "Thermodynamics of electrolytes. Vi. Weak electrolytes including h 3 po 4", Journal of Solution Chemistry, Vol. 5, (1976), 269-278. doi: 10.1016/j.jece.2020.103842.
  40. Pitzer, K.S. and Mayorga, G., "Thermodynamics of electrolytes. Ii. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent", The Journal of Physical Chemistry, Vol. 77, No. 19, (1973), 2300-2308. doi: 10.1021/j100638a009.
  41. Pitzer, K.S., "Activity coefficients in electrolyte solutions, CRC press, (2018).
  42. Pitzer, K.S., "Thermodynamics of electrolytes. I. Theoretical basis and general equations", The Journal of Physical Chemistry, Vol. 77, No. 2, (1973), 268-277. doi: 10.1021/j100621a026.
  43. Cruz, J.L. and Renon, H., "A new thermodynamic representation of binary electrolyte solutions nonideality in the whole range of concentrations", AIChE Journal, Vol. 24, No. 5, (1978), 817-830. doi: 10.1002/aic.690240508.
  44. Zhao, E., Yu, M., Sauvé, R.E. and Khoshkbarchi, M.K., "Extension of the wilson model to electrolyte solutions", Fluid Phase Equilibria, Vol. 173, No. 2, (2000), 161-175. doi: 10.1016/S0378-3812(00)00393-9.
  45. Thomsen, K., Rasmussen, P. and Gani, R., "Correlation and prediction of thermal properties and phase behaviour for a class of aqueous electrolyte systems", Chemical Engineering Science, Vol. 51, No. 14, (1996), 3675-3683. doi: 10.1016/0009-2509(95)00418-1.
  46. Chen, C.C. and Evans, L.B., "A local composition model for the excess gibbs energy of aqueous electrolyte systems", AIChE Journal, Vol. 32, No. 3, (1986), 444-454. doi: 10.1208/s12249-019-1373-4.
  47. Haghtalab, A. and Vera, J., "A nonrandom factor model for the excess gibbs energy of electrolyte solutions", AIChE Journal, Vol. 34, No. 5, (1988), 803-813. doi: 10.1002/aic.690340510.
  48. Sadeghi, R., "New local composition model for electrolyte solutions", Fluid Phase Equilibria, Vol. 231, No. 1, (2005), 53-60. doi: 10.1016/j.molliq.2011.10.015.
  49. Chen, C.-C. and Mathias, P.M., "Applied thermodynamics for process modeling", American Institute of Chemical Engineers. AIChE Journal, Vol. 48, No. 2, (2002), 194. doi: 10.1002/aic.690480202.
  50. Renon, H. and Prausnitz, J.M., "Local compositions in thermodynamic excess functions for liquid mixtures", AIChE Journal, Vol. 14, No. 1, (1968), 135-144. doi: 10.1002/aic.690140124.
  51. Haghtalab, A. and Peyvandi, K., "Generalized electrolyte-uniquac-nrf model for calculation of solubility and vapor pressure of multicomponent electrolytes solutions", Journal of Molecular Liquids, Vol. 165, No., (2012), 101-112. doi: 10.1016/j.molliq.2011.10.015.
  52. Mohammadzadeh, M., Bagheri, H. and Ghader, S., "Solvent extraction of nickel and zinc from nitric acid solution using d2ehpa: Experimental and modeling", Journal of Solution Chemistry, Vol. 51, No. 4, (2022), 424-447. doi: 10.1007/s10953-022-01151-5.
  53. Sethurajan, M., Huguenot, D., Jain, R., Lens, P.N., Horn, H.A., Figueiredo, L.H. and van Hullebusch, E.D., "Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues", Journal of Hazardous Materials, Vol. 324, (2017), 71-82. doi: 10.1016/j.jhazmat.2021.125664.
  54. Safarzadeh, M.S., Moradkhani, D., Ilkhchi, M.O. and Golshan, N.H., "Determination of the optimum conditions for the leaching of cd–ni residues from electrolytic zinc plant using statistical design of experiments", Separation and Purification Technology, Vol. 58, No. 3, (2008), 367-376. doi: 10.1016/j.seppur.2007.05.016.
  55. Randhawa, N.S., Gharami, K. and Kumar, M., "Leaching kinetics of spent nickel–cadmium battery in sulphuric acid", Hydrometallurgy, Vol. 165, (2016), 191-198. doi: 10.1016/j.hydromet.2015.09.011.
  56. Aghazadeh, S., Gharabaghi, M. and Shafaei, Z., "Thermodynamical and catalytic aspects of zinc separation from aqueous solution", Chinese Journal of Chemical Engineering, Vol. 26, No. 12, (2018), 2455-2460. doi: 10.1016/j.cjche.2018.07.022.
  57. Aghdam, A.A.B., Yoozbashizadeh, H. and Moghaddam, J., "Simple separation method of zn (ii) and cd (ii) from brine solution of zinc plant residue and synthetic chloride media using solvent extraction", Chinese Journal of Chemical Engineering, Vol. 28, No. 4, (2020), 1055-1061. doi: 10.1016/j.cjche.2019.12.003.
  58. Sheik, A., Ghosh, M., Sanjay, K., Subbaiah, T. and Mishra, B., "Dissolution kinetics of nickel from spent catalyst in nitric acid medium", Journal of the Taiwan Institute of Chemical Engineers, Vol. 44, No. 1, (2013), 34-39. doi: 10.1016/j.jtice.2012.08.003.
  59. Assefi, M., Maroufi, S., Mayyas, M. and Sahajwalla, V., "Recycling of ni-cd batteries by selective isolation and hydrothermal synthesis of porous nio nanocuboid", Journal of Environmental Chemical Engineering, Vol. 6, No. 4, (2018), 4671-4675. doi: 10.1016/j.jece.2018.07.021.
  60. Yu, S., Xing, W., Xue, F., Cheng, Y. and Li, B., "Solubility and thermodynamic properties of nimodipine in pure and binary solvents at a series of temperatures", The Journal of Chemical Thermodynamics, Vol. 152, (2021), 106259. doi: 10.1016/j.jct.2020.106259.
  61. Ravichandran, A., Khare, R. and Chen, C.C., "Predicting nrtl binary interaction parameters from molecular simulations", AIChE Journal, Vol. 64, No. 7, (2018), 2758-2769. doi: 10.1002/aic.16117.
  62. Pinto, I.S. and Soares, H.M., "Selective leaching of molybdenum from spent hydrodesulphurisation catalysts using ultrasound and microwave methods", Hydrometallurgy, Vol. 129, (2012), 19-25. doi: 10.1016/j.hydromet.2012.08.008.
  63. Spooren, J., Binnemans, K., Björkmalm, J., Breemersch, K., Dams, Y., Folens, K., González-Moya, M., Horckmans, L., Komnitsas, K. and Kurylak, W., "Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in europe: Technology development trends", Resources, Conservation and Recycling, Vol. 160, (2020), 104919. doi: 10.1016/j.resconrec.2020.104919.
  64. Haghtalab, A. and Peyvandi, K., "Electrolyte-uniquac-nrf model for the correlation of the mean activity coefficient of electrolyte solutions", Fluid Phase Equilibria, Vol. 281, No. 2, (2009), 163-171. doi: 10.1016/j.fluid.2009.04.013.
  65. Asamoah, R.K., Skinner, W. and Addai-Mensah, J., "Alkaline cyanide leaching of refractory gold flotation concentrates and bio-oxidised products: The effect of process variables", Hydrometallurgy, Vol. 179, (2018), 79-93. doi: 10.1016/j.hydromet.2018.05.010.
  66. Shen, X., Shao, H., Liu, Y. and Zhai, Y., "Extraction, phase transformation and kinetics of valuable metals from nickel-chromium mixed metal oxidized ore", Minerals Engineering, Vol. 161, (2021), 106737. doi: 10.1016/j.mineng.2020.106737.