Design of a Circular Patch Antenna with Parasitic Elements for 5G Applications

Document Type : Original Article

Authors

1 Faculty of Engineering, Rajamangala University of Technology Isan Khonkaen Campus, Khonkaen, Thailand

2 School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand

Abstract

A design of a wideband bidirectional pattern antenna, accomplished by the integration of a circular patch, crescents as parasitic elements, encompassed by a circular ring adjoining the ground plane, to operate over the mid-band 5G sub-6 GHz applications is reported. It is come up with a copper grazed on FR4 substrate with relative permittivity of 4.3 and height of 1.6 mm. The proposed antenna is fed by a 50-ohm coplanar waveguide, which is printed on the same side of the radiating circular patch. A concise antenna model with dimensions of 45 × 45 × 0.6 mm3 was made up and investigated to affirm the simulation outcomes. Good consistency was confirmed between experimental and simulation results. The proposed antenna has the benefit of bidirectional pattern with a good gain of 5.24 dBi and wide bandwidth covering of 111.4% (1.81-6.36 GHz) — it is one of good postulants for 5G new radiation application especially for indoor environment, narrow, and long path services area like corridor, tunnel, and train station, etc.

Keywords

Main Subjects


  1. Sonkki, M., Antonino-Daviu, E., He, D. and Myllymäki, S., "Advanced simulation methods of antennas and radio propagation for 5g and beyond communications systems", International Journal of Antennas and Propagation, Vol. 2020, (2020), 1-3. https://doi.org/10.1155/2020/4387494
  2. Dicandia, F.A., Fonseca, N.J., Bacco, M., Mugnaini, S. and Genovesi, S., "Space-air-ground integrated 6g wireless communication networks: A review of antenna technologies and application scenarios", Sensors, Vol. 22, No. 9, (2022), 3136. https://doi.org/10.3390/s22093136
  3. Hussain, S., Qu, S.-W., Sharif, A.B., Abubakar, H.S., Wang, X.-H., Imran, M.A. and Abbasi, Q.H., "Current sheet antenna array and 5g: Challenges, recent trends, developments, and future directions", Sensors, Vol. 22, No. 9, (2022), 3329. https://doi.org/10.3390/s22093329
  4. Paul, L.C., Saha, H.K., Rani, T., Mahmud, M.Z., Roy, T.K. and Lee, W.-S., "An omni-directional wideband patch antenna with parasitic elements for sub-6 ghz band applications", International Journal of Antennas and Propagation, Vol. 2022, (2022). https://doi.org/10.1155/2022/9645280
  5. Firdaus, F., Fadhillah, I., Ahmad, N. and Mohd Alic, A., "A light solution for device diversity problem in a wireless local area network fingerprint indoor positioning system", International Journal of Engineering, Transaction A: Basics, Vol. 36, No. 4, (2023), 649-658. doi: 10.5829/IJE.2023.36.04A.05.
  6. Sridher, T., Sarma, A. and Naveen Kumar, P., "Performance evaluation of onboard wi-fi module antennas in terms of orientation and position for iot applications", International Journal of Engineering, Transaction A: Basics, Vol. 35, No. 10, (2022), 1918-1928. doi: 10.5829/IJE.2022.35.10A.11.
  7. Ta, S.X., Choo, H. and Park, I., "Broadband printed-dipole antenna and its arrays for 5g applications", IEEE Antennas and Wireless Propagation Letters, Vol. 16, (2017), 2183-2186. doi: 10.1109/LAWP.2017.2703850.
  8. Saraereh, O.A., "A novel broadband antenna design for 5g applications", CMC-Comput. Mater. Continua, Vol. 67, No. 1, (2021), 1121-1136. https://doi.org/10.32604/cmc.2021.015066
  9. Patnaik, A. and Kartikeyan, M., "Compact dual and triple band antennas for 5g-iot applications", International Journal of Microwave and Wireless Technologies, Vol. 14, No. 1, (2022), 115-122. https://doi.org/10.1017/S1759078721000301
  10. Yazdani, R., Aliakbarian, H., Sahraei, A. and Vandenbosch, G.A., "A compact triple‐band dipole array antenna for selected sub 1 ghz, 5g and wifi access point applications", IET Microwaves, Antennas & Propagation, Vol. 15, No. 15, (2021), 1866-1876. https://doi.org/10.1049/mia2.12200
  11. Abolade, J.O., Konditi, D.B., Mpele, P.M., Orimogunje, A.M. and Oguntoye, J.P., "Miniaturized dual-band antenna for gsm1800, wlan, and sub-6 ghz 5g portable mobile devices", Journal of Electrical and Computer Engineering, Vol. 2022, (2022). doi: 10.1155/2022/5455915.
  12. Cai, J., Zhang, J., Xi, S., Huang, J. and Liu, G., "A wideband eight-element antenna with high isolation for 5g new-radio applications", Applied Sciences, Vol. 13, No. 1, (2022), 137. https://doi.org/10.3390/app13010137
  13. Saleh, C.M., Almajali, E., Jarndal, A., Yousaf, J., Alja’Afreh, S.S. and Amaya, R.E., "Wideband 5g antenna gain enhancement using a compact single-layer millimeter wave metamaterial lens", IEEE Access, Vol. 11, (2023), 14928-14942. doi: 10.1109/JSAC.1987.1146527.
  14. Ghobadi, C. and Majidzadeh, M., "Multi attribute analysis of a novel compact uwb antenna with via-fed elements for dual band notch function", International Journal of Engineering, Transactions A: Basics, Vol. 27, No. 10, (2014), 1565-1572. doi: 10.5829/idosi.ije.2014.27.10a.10.
  15. Ding, K., Gao, C., Zhang, B., Wu, Y. and Qu, D., "A compact printed unidirectional broadband antenna with parasitic patch", IEEE Antennas and Wireless Propagation Letters, Vol. 16, (2017), 2341-2344. doi: 10.1109/LAWP.2017.2718000.
  16. Varamini, G., Keshtkar, A. and Naser-Moghadasi, M., "Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification", AEU-International Journal of Electronics and Communications, Vol. 83, (2018), 213-221. doi: 10.1016/j.aeue.2017.08.057.
  17. Samsuzzaman, M. and Islam, M.T., "Circularly polarized broadband printed antenna for wireless applications", Sensors, Vol. 18, No. 12, (2018), 4261. https://doi.org/10.3390/s18124261
  18. Balani, W., Sarvagya, M., Samasgikar, A., Ali, T. and Kumar, P., "Design and analysis of super wideband antenna for microwave applications", Sensors, Vol. 21, No. 2, (2021), 477. https://doi.org/10.3390/s21020477
  19. Qi, Z., Ding, X., Yang, W. and Chen, J., "A compact broadband planar inverted-f antenna with dual-resonant modes", Applied Sciences, Vol. 12, No. 17, (2022), 8915. https://doi.org/10.3390/app12178915
  20. Rana, S., Verma, J. and Gautam, A.K., "A wideband circularly polarized cpw-fed diamond shape microstrip antenna for wlan/wimax applications", Progress In Electromagnetics Research C, Vol. 131, (2023), 25-33. doi: 10.2528/PIERC22122106.
  21. Biswas, B., Ghatak, R. and Poddar, D., "A fern fractal leaf inspired wideband antipodal vivaldi antenna for microwave imaging system", IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, (2017), 6126-6129. doi: 10.1109/TAP.2017.2748361.
  22. Wang, J., Wong, H., Ji, Z. and Wu, Y., "Broadband cpw-fed aperture coupled metasurface antenna", IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, (2019), 517-520. doi: 10.1109/LAWP.2019.2895618.
  23. Asmeida, A., Abidin, Z.Z., Mohd Shah, S., Kamarudin, M.R., Malek, N.A. and Nebhen, J., "Wideband crescent-shaped slotted printed antenna with radiant circular polarisation", International Journal of Antennas and Propagation, Vol. 2021, (2021), 1-12. https://doi.org/10.1155/2021/9975679
  24. Hussain, M., Naqvi, S.I., Awan, W.A., Ali, W.A.E., Ali, E.M., Khan, S. and Alibakhshikenari, M., "Simple wideband extended aperture antenna-inspired circular patch for v-band communication systems", AEU-International Journal of Electronics and Communications, Vol. 144, (2022), 154061. https://doi.org/10.1016/j.aeue.2021.154061
  25. Koma’rudin, N., Zakaria, Z., Althuwayb, A., Lago, H., Alsariera, H., Nornikman, H., Al-Gburi, A. and Soh, P., "Directional wideband wearable antenna with circular parasitic element for microwave imaging applications", (2022). https://doi.org/10.32604/cmc.2022.024782
  26. Studio, C., "Cst studio suite 3d em simulation and analysis software", CST Studio Suite, (2018).
  27. Balanis, C.A., "Antenna theory: Analysis and design, John wiley & sons, (2016).
  28. Collin, R.E., "Foundations for microwave engineering, John Wiley & Sons, (2007).
  29. Kumar, G. and Ray, K.P., "Broadband microstrip antennas, Artech house, (2002).