High Energy Release-high Retraction Smart Polymer Fibers used in Artificial Muscle Fabrication

Document Type : Original Article

Authors

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Shape-memory polymers (SMPs) could remember their original shape and then, return to their initial shape upon stimulus. So far, quantities such as fixity and recovery ratio of SMPs have been broadly reported. Nevertheless, one main issue is the existence and use of an appropriate approach to quantitatively estimate the SMPs released energy. In addition, it is hypothesized that the elastic behavior of SMPs plays an underlying role when SMP fibers need to exhibit high-tension and high-elongation capacity as required in synthetic muscles. Here, we present, for first time, SMP trinary bulk and filament systems of acrylonitrile butadiene styrene (ABS)/thermoplastic polyurethane (TPU)/ethylene vinyl acetate (EVA) fabricated under calendering intense shear mixing and hot pressing. A digital blocked force load cell was used to record specimens energy released. The results exhibited high retraction from the specimens secondary shape correlated to the tensile behavior. It was shown the blended system of 50, 25 and 25% of TPU, ABS and EVA, respectively, resulted in ~640% and 3900% increase in the elastic modulus and energy release compared to EVA/TPU systems. The double SMP filaments led to a 50% increase in the energy release compared to single fibers. Nevertheless, the blended binary specimens with the TPU/ABS ratio of 50/50 exhibited 600% increase in tensile strength. It was confirmed the elastic modulus, number of fibers and elongation at break govern the SMP stored. The findings of the research lightened a new class of SMPs to be used as fiber-based artificial muscles and orthodontic products.

Keywords

Main Subjects


  1. Xia, Y., He, Y., Zhang, F., Liu, Y. and Leng, J., "A review of shape memory polymers and composites: Mechanisms, materials, and applications", Advanced Materials, Vol. 33, No. 6, (2021), 2000713. DOI: 10.1002/adma.202000713.
  2. Jahangir, H. and Bagheri, M., "Evaluation of seismic response of concrete structures reinforced by shape memory alloys", International Journal of Engineering, Vol. 33, No. 3, (2020), 410-418 DOI: 10.5829/ije.2020.33.03c.05.
  3. Wang, L., Zhang, F., Liu, Y. and Leng, J., "Shape memory polymer fibers: Materials, structures, and applications", Advanced Fiber Materials, Vol. 4, No. 1, (2022), 5-23. DOI: 10.1007/s42765-021-00073-z.
  4. Yakacki, C.M. and Gall, K., "Shape-memory polymers for biomedical applications", Shape-memory Polymers, (2009), 147-175. DOI: 10.1002/adfm.201909047.
  5. Pineda-Castillo, S.A., Stiles, A.M., Bohnstedt, B.N., Lee, H., Liu, Y. and Lee, C.-H., "Shape memory polymer-based endovascular devices: Design criteria and future perspective", Polymers, Vol. 14, No. 13, (2022), 2526. DOI: 10.3390/polym14132526.
  6. Ramaraju, H., Akman, R.E., Safranski, D.L. and Hollister, S.J., "Designing biodegradable shape memory polymers for tissue repair", Advanced Functional Materials, Vol. 30, No. 44, (2020), 2002014. DOI: 10.1002/adfm.202002014.
  7. Chen, Y., Zhao, X., Luo, C., Shao, Y., Yang, M.-B. and Yin, B., "A facile fabrication of shape memory polymer nanocomposites with fast light-response and self-healing performance", Composites Part A: Applied Science and Manufacturing, Vol. 135, (2020), 105931. DOI: 10.1016/j.compositesa.2020.105931.
  8. Mitchell, K., Raymond, L. and Jin, Y., "Material extrusion advanced manufacturing of helical artificial muscles from shape memory polymer", Machines, Vol. 10, No. 7, (2022), 497. DOI: 10.1002/adfm.202002014.
  9. Sonjaya, M.L. and Hidayat, M.F., "Construction and analysis of plastic extruder machine for polyethylene plastic waste", EPI International Journal of Engineering, Vol. 3, No. 2, (2020), 132-137. DOI: 10.25042/epi-ije.082020.07.
  10. Zhang, H.-C., Huang, J., Zhao, P.-F. and Lu, X., "Bio-based ethylene-co-vinyl acetate/poly (lactic acid) thermoplastic vulcanizates with enhanced mechanical strength and shape memory behavior", Polymer Testing, Vol. 87, (2020), 106537.
  11. Schönfeld, D., Chalissery, D., Wenz, F., Specht, M., Eberl, C. and Pretsch, T., "Actuating shape memory polymer for thermoresponsive soft robotic gripper and programmable materials", Molecules, Vol. 26, No. 3, (2021), 522. DOI: 10.3390/molecules26030522.
  12. Lendlein, A. and Gould, O.E., "Reprogrammable recovery and actuation behaviour of shape-memory polymers", Nature Reviews Materials, Vol. 4, No. 2, (2019), 116-133. DOI: 10.1038/s41578-018-0078-8.
  13. Jose, S., George, J.J., Siengchin, S. and Parameswaranpillai, J., "Introduction to shape-memory polymers, polymer blends and composites: State of the art, opportunities, new challenges and future outlook", Shape Memory Polymers, Blends and Composites, (2020), 1-19. DOI: 10.1007/978-981-13-8574-2_1.
  14. Yu, K., Xie, T., Leng, J., Ding, Y. and Qi, H.J., "Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers", Soft Matter, Vol. 8, No. 20, (2012), 5687-5695. DOI: 10.1039/C2SM25292A.
  15. Hornat, C.C., Nijemeisland, M., Senardi, M., Yang, Y., Pattyn, C., van der Zwaag, S. and Urban, M.W., "Quantitative predictions of maximum strain storage in shape memory polymers (smp)", Polymer, Vol. 186, (2020), 122006. DOI: 10.1016/j.polymer.2019.122006.
  16. Wei, W., Liu, J., Huang, J., Cao, F., Qian, K., Yao, Y. and Li, W., "Recent advances and perspectives of shape memory polymer fibers", European Polymer Journal, (2022), 111385. DOI: 10.1016/j.eurpolymj.2022.111385.
  17. Posada-Murcia, A., Uribe-Gomez, J.M., Förster, S., Sommer, J.-U., Dulle, M. and Ionov, L., "Mechanism of behavior of two-way shape memory polymer under constant strain conditions", Macromolecules, Vol. 55, No. 5, (2022), 1680-1689. DOI: 10.1021/acs.macromol.1c02564.
  18. Namathoti, S. and PS, R.S., "A review on progress in magnetic, microwave, ultrasonic responsive shape-memory polymer composites", Materials Today: Proceedings, Vol. 56, No., (2022), 1182-1191. DOI: 10.1016/j.matpr.2021.11.151.
  19. Scalet, G., "Two-way and multiple-way shape memory polymers for soft robotics: An overview", in Actuators, MDPI. Vol. 9, No. 1, (2020), 10.
  20. Sun, L. and Huang, W.M., "Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers", Soft Matter, Vol. 6, No. 18, (2010), 4403-4406. DOI: 10.1039/C0SM00236D.
  21. Nissenbaum, A., Greenfeld, I. and Wagner, H., "Shape memory polyurethane-amorphous molecular mechanism during fixation and recovery", Polymer, Vol. 190, (2020), 122226. DOI: 10.1016/j.polymer.2020.122226.
  22. Staszczak, M., Nabavian Kalat, M., Golasiński, K.M., Urbański, L., Takeda, K., Matsui, R. and Pieczyska, E.A., "Characterization of polyurethane shape memory polymer and determination of shape fixity and shape recovery in subsequent thermomechanical cycles", Polymers, Vol. 14, No. 21, (2022), 4775. DOI: 10.3390/polym14214775
  23. Fan, J. and Li, G., "High performance and tunable artificial muscle based on two-way shape memory polymer", RSC advances, Vol. 7, No. 2, (2017), 1127-1136. DOI: 10.1039/C6RA25024F.
  24. Mirvakili, S.M. and Hunter, I.W., "Artificial muscles: Mechanisms, applications, and challenges", Advanced Materials, Vol. 30, No. 6, (2018), 1704407. DOI: 10.1002/adma.201704407.
  25. Mirvakili, S.M. and Hunter, I.W., "Multidirectional artificial muscles from nylon", Advanced Materials, Vol. 29, No. 4, (2017), 1604734 DOI: 10.1002/adma.201604734.
  26. Xie, H., Li, L., Deng, X.-Y., Cheng, C.-Y., Yang, K.-K. and Wang, Y.-Z., "Reinforcement of shape-memory poly (ethylene-co-vinyl acetate) by carbon fibre to access robust recovery capability under resistant condition", Composites Science and Technology, Vol. 157, (2018), 202-208. DOI: 10.1016/j.compscitech.2018.01.031.
  27. Yu, Q., Yang, X., Chen, Y., Yu, K., Gao, J., Liu, Z., Cheng, P., Zhang, Z., Aguila, B. and Ma, S., "Fabrication of light‐triggered soft artificial muscles via a mixed‐matrix membrane strategy", Angewandte Chemie International Edition, Vol. 57, No. 32, (2018), 10192-10196. DOI: 10.1002/anie.201805543.
  28. Yip, M.C. and Niemeyer, G., "High-performance robotic muscles from conductive nylon sewing thread", in 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE., (2015), 2313-2318.
  29. Xiao, Y.Y., Jiang, Z.C., Tong, X. and Zhao, Y., "Biomimetic locomotion of electrically powered “janus” soft robots using a liquid crystal polymer", Advanced Materials, Vol. 31, No. 36, (2019), 1903452. DOI: 10.1002/adma.201903452.
  30. Pradhan, S., Sahu, S.K., Pramanik, J. and Badgayan, N.D., "An insight into mechanical & thermal properties of shape memory polymer reinforced with nanofillers; a critical review", Materials Today: Proceedings, Vol. 50, (2022), 1107-1112. DOI: 10.1016/j.matpr.2021.07.504.
  31. Lim, W.L.Y., Rahim, F.H.A., Johar, M. and Rusli, A., "Tensile and shape memory properties of polylactic acid/ethylene-vinyl acetate blends", Materials Today: Proceedings, Vol. 66, (2022), 2771-2775. DOI: 10.1016/j.matpr.2022.06.513.
  32. Bernardes, G.P., da Rosa Luiz, N., Santana, R.M.C. and de Camargo Forte, M.M., "Influence of the morphology and viscoelasticity on the thermomechanical properties of poly (lactic acid)/thermoplastic polyurethane blends compatibilized with ethylene‐ester copolymer", Journal of Applied Polymer Science, Vol. 137, No. 31, (2020), 48926. DOI: 10.1002/app.48926.
  33. Ke, D., Chen, Z., Momo, Z.Y., Jiani, W., Xuan, C., Xiaojie, Y. and Xueliang, X., "Recent advances of two-way shape memory polymers and four-dimensional printing under stress-free conditions", Smart Materials and Structures, Vol. 29, No. 2, (2020), 023001. DOI: 10.1088/1361-665X/ab5e6d.
  34. Voda, A., Beck, K., Schauber, T., Adler, M., Dabisch, T., Bescher, M., Viol, M., Demco, D.E. and Blümich, B., "Investigation of soft segments of thermoplastic polyurethane by nmr, differential scanning calorimetry and rebound resilience", Polymer Testing, Vol. 25, No. 2, (2006), 203-213. DOI: 10.1016/j.polymertesting.2005.10.007.
  35. Stark, W. and Jaunich, M., "Investigation of ethylene/vinyl acetate copolymer (eva) by thermal analysis dsc and dma", Polymer Testing, Vol. 30, No. 2, (2011), 236-242. DOI: 10.1016/j.polymertesting.2010.12.003.
  36. Memarian, F., Fereidoon, A. and Ahangari, M.G., "The shape memory, and the mechanical and thermal properties of tpu/abs/cnt: A ternary polymer composite", RSC Advances, Vol. 6, No. 103, (2016), 101038-101047. DOI: 10.1039/C6RA23087C.
  37. Chatterjee, T., Dey, P., Nando, G.B. and Naskar, K., "Thermo-responsive shape memory polymer blends based on alpha olefin and ethylene propylene diene rubber", Polymer, Vol. 78, (2015), 180-192. DOI: 10.1016/j.polymer.2015.10.007.
  38. Dao, T.D., Goo, N.S. and Yu, W.R., "Blocking force measurement of shape memory polymer composite hinges for space deployable structures", Journal of Intelligent Material Systems and Structures, Vol. 29, No. 18, (2018), 3667-3678. DOI: 10.1177/1045389X18798950.
  39. Zhao, Q., Behl, M. and Lendlein, A., "Shape-memory polymers with multiple transitions: Complex actively moving polymers", Soft Matter, Vol. 9, No. 6, (2013), 1744-1755. DOI: 10.1039/C2SM27077C.
  40. Sun, L., Huang, W., Wang, C., Zhao, Y., Ding, Z. and Purnawali, H., "Optimization of the shape memory effect in shape memory polymers", Journal of Polymer Science Part A: Polymer Chemistry, Vol. 49, No. 16, (2011), 3574-3581.
  41. Hornat, C.C. and Urban, M.W., "Shape memory effects in self-healing polymers", Progress in Polymer Science, Vol. 102, (2020), 101208. DOI: 10.1016/j.progpolymsci.2020.101208.
  42. Prasad, A., Moon, S. and Rao, I.J., "Thermo-mechanical modeling of viscoelastic crystallizable shape memory polymers", International Journal of Engineering Science, Vol. 167, (2021), 103524. DOI: 10.1016/j.ijengsci.2021.103524.
  43. Nie, D., Yin, X., Cai, Z. and Wang, J., "Effect of crystallization on shape memory effect of poly (lactic acid)", Polymers, Vol. 14, No. 8, (2022), 1569. DOI: 10.3390/polym14081569
  44. Li, Y., Min, L., Xin, J., Wang, L., Wu, Q., Fan, L., Gan, F. and Yu, H., "High-performance fibrous artificial muscle based on reversible shape memory uhmwpe", Journal of Materials Research and Technology, Vol. 20, (2022), 7-17. DOI: 10.1016/j.jmrt.2022.07.045.
  45. Duarah, R., Singh, Y.P., Gupta, P., Mandal, B.B. and Karak, N., "Smart self-tightening surgical suture from a tough bio-based hyperbranched polyurethane/reduced carbon dot nanocomposite", Biomedical Materials, Vol. 13, No. 4, (2018), 045004. DOI: 10.1088/1748-605X/aab93c.