Image Restoration by Projection onto Convex Sets with Particle Swarm Parameter Optimization

Document Type : Original Article


1 Department of Computer Engineering, Engineering Faculty, Lorestan University, Khorramabad, Iran

2 Department of Electrical Engineering, Faculty of Engineering, Yasouj University, Yasouj, Iran


Image restoration is the operation of obtaining a high-quality image from a corrupt/noisy image and is widely used in many applications such as Magnetic Resonance Imaging (MRI) and fingerprint identification. This paper proposes an image restoration model based on projection onto convex sets (POCS) and particle swarm optimization (PSO). For this task, a number of convex sets are used as constraints and images are projected to these sets iteratively to reach restored image. Since relaxation parameter in POCS has a significant effect on restoration results, PSO is developed to find the best value for this parameter to be used in restoration process. The proposed scheme for image restoration is evaluated on three popular images with 4 configurations of noise, compared with 5 competitive restoration models. Results demonstrate that the proposed method outperforms other models in 32 out of 48 cases in images with different noise configurations with respect to relative error, ISNR, MAE and MSE measures.


Main Subjects

  1. He, L., Wang, Y., Liu, J., Wang, C., and Gao, S., “Single image restoration through ℓ2-relaxed truncated ℓ0 analysis-based sparse optimization in tight frames”, Neurocomputing, Vol. 443, (2021), 272-291, doi: 10.1016/j.neucom.2021.02.053.
  2. Li, Y., Xia, Q., Lee, C., Kim, S., and Kim, J., “A robust and efficient fingerprint image restoration method based on a phase-field model”, Pattern Recognition, Vol. 123, (2022), 108405, doi: 10.1016/j.patcog.2021.108405.
  3. Kishore, A., Kumar, A., and Dang, N., “Enhanced image restoration by GANs using game theory”, Procedia Computer Science, Vol. 173, (2020), 225-233, doi: 10.1016/j.procs.2020.06.027.
  4. Cao, J., and Wu, J., “A conjugate gradient algorithm and its applications in image restoration”, Applied Numerical Mathematics, Vol. 152, (2020), 243-252, doi: 10.1016/j.apnum.2019.12.002.
  5. Deng, X., and Dragotti, P. L., “Deep convolutional neural network for multi-modal image restoration and fusion”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 43, No. 10, (2020), 3333-3348, doi: 10.1109/TPAMI.2020.2984244.
  6. Papyan, V., and Elad, M., “Multi-scale patch-based image restoration”, IEEE Transactions on Image Processing, Vol. 25, No. 1, (2015), 249-261, doi: 10.1109/TIP.2015.2499698.
  7. Pang, Z. F., Guo, L. Z., Duan, Y., and Lu, J., “Image restoration based on the minimized surface regularization”, Computers & Mathematics with Applications, Vol. 76, No. 8, (2018), 1893-1905, doi: 10.1016/j.camwa.2018.07.037.
  8. Rudin, L. I., Osher, S., and Fatemi, E., “Nonlinear total variation based noise removal algorithms”, Physica D: Nonlinear Phenomena, Vol. 60, No. 1-4, (1992), 259-268, doi: 10.1016/0167-2789(92)90242-F.
  9. Zhi, X., Jiang, S., Zhang, L., Hu, J., Yu, L., Song, X., and Gong, J., “Multi-frame image restoration method for novel rotating synthetic aperture imaging system”, Results in Physics, Vol. 23, (2021), 103991, doi: 10.1016/j.rinp.2021.103991.
  10. Zhang, Y. “An EM-and wavelet-based multi-band image restoration approach”, In 2014 19th International Conference on Digital Signal Processing, (2014), 617-620, doi: 10.1109/ICDSP.2014.6900738.
  11. Tanikawa, R., Fujisawa, T., and Ikehara, M., “Image restoration based on weighted average of multiple blurred and noisy images”, In 2018 International Workshop on Advanced Image Technology (IWAIT), (2018), 1-4, doi: 10.1109/IWAIT.2018.8369665.
  12. Ševčík, J., Šmídl, V., and Šroubek, F., “A n adaptive correlated image prior for image restoration problems”, IEEE Signal Processing Letters, Vol. 25, No. 7, (2018), 1024-1028, doi: 10.1109/LSP.2018.2836964.
  13. Hu, T., Li, W., Liu, N., Tao, R., Zhang, F., and Scheunders, P., “Hyperspectral image restoration using adaptive anisotropy total variation and nuclear norms”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 2, (2020), 1516-1533, doi: 10.1109/TGRS.2020.2999634.
  14. Dar, Y., Elad, M., and Bruckstein, A. M., “Restoration by compression”, IEEE Transactions on Signal Processing, Vol. 66, No. 22, (2018), 5833-5847, doi: 10.1109/TSP.2018.2871388.
  15. Li, X. Q., Fang, K. L., and Jin, C., “Super-Resolution Restoration for Image Based on Entropy Constraint and Projection onto Convex Set”, In Advanced Materials Research, Vol. 468, (2012), 1041-1048, doi: 10.4028/
  16. Lu, H., Li, S., Liu, Q., and Zhang, M., “MF-LRTC: Multi-filters guided low-rank tensor coding for image restoration”, Neurocomputing, Vol. 303, (2018), 88-102, doi: 10.1016/j.neucom.2018.04.046.
  17. Choi, J. K., Dong, B., and Zhang, X., “An edge driven wavelet frame model for image restoration”, Applied and Computational Harmonic Analysis, Vol. 48, No. 3, (2020), 993-1029, doi: 10.1016/j.acha.2018.09.007.
  18. Motohashi, S., Nagata, T., Goto, T., Aoki, R., and Chen, H., “A study on blind image restoration of blurred images using R-map”, In 2018 International Workshop on Advanced Image Technology (IWAIT), 1-4, 2018, doi: 10.1109/IWAIT.2018.8369650.
  19. Liu, Z., Yu, L., and Sun, H., “Image restoration via Bayesian dictionary learning with nonlocal structured beta process”, Journal of Visual Communication and Image Representation, Vol. 52, (2018), 159-169, doi: 10.1016/j.jvcir.2018.02.011.
  20. Gou, Y., Li, B., Liu, Z., Yang, S., and Peng, X., “Clearer: Multi-scale neural architecture search for image restoration”, Advances in Neural Information Processing Systems, Vol. 33, (2020), 17129-17140, doi: 10.48550/arXiv.2203.04313.
  21. Xia, X., Xing, Y., Wei, B., Zhang, Y., Li, X., Deng, X., and Gui, L., “A fitness-based multi-role particle swarm optimization”, Swarm and Evolutionary Computation, Vol. 44, (2019), 349-364, doi: 10.1016/j.swevo.2018.04.006.
  22. Mehmood, Y., Sadiq, M., Shahzad, W., and Amin, F., “Fitness-based acceleration coefficients to enhance the convergence speed of novel binary particle swarm optimization”, In 2018 International Conference on Frontiers of Information Technology (FIT), 355-360, 2018, doi: 10.1109/FIT.2018.00069.
  23. Iravani, S., and Ezoji, M., “A General Framework for 1-D Histogram-baesd Image Contrast Enhancement”, International Journal of Engineering, Transactions A: Basics, Vol. 29, No. 10. (2016), 1384-1391, doi: 10.5829/idosi.ije.2016.29.10a.09.
  24. Tang, R., Zhou, X., and Wang, D., “Improved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images”, International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 10, (2017), 1503-1509, doi: 10.5829/ije.2017.30.10a.11.
  25. Lin, L., and Feng, L., “Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions”, International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 2, (2017), 199-206, doi: 10.5829/idosi.ije.2017.30.02b.06.
  26. Mortezaei, Z., Hassanpour, H., and Asadi Amiri, S., “Image Enhancement Using an Adaptive Un-sharp Masking Method Considering the Gradient Variation”, International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 8, (2017), 1118-1125, doi: 10.5829/ije.2017.30.08b.02.
  27. Azari Nasrabad, F., Hassanpour, H., and Asadi Amiri, S, “Adaptive Image Dehazing via Improving Dark Channel Prior”, International Journal of Engineering, Transactions B: Applications, Vol. 32, No. 2, (2019), 249-255, doi: 10.5829/ije.2019.32.02b.10.
  28. Seyyedyazdi, S. J., and Hassanpour, H., “Improving Super-resolution Techniques via Employing Blurriness Information of the Image”, International Journal of Engineering, Transactions B: Applications, Vol. 31, No. 2, (2018), 241-249, doi: 10.5829/ije.2018.31.02b.07.
  29. Seyyedyazdi, S. J., and Hassanpour, H., “Super-resolution of Defocus Blurred Images”, International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 4, (2020), 539-545, doi: 10.5829/ije.2020.33.04a.04.
  30. Mammone, R. J., “Computational methods of signal recovery and recognition”, John Wiley & Sons, Inc., (1992), ISBN-13: ‎ 978-0471853848.
  31. Kuo, S. S., and Mammone, R. J., “Image restoration by convex projections using adaptive constraints and the L/sub 1/norm”, IEEE Transactions on Signal Processing, Vol. 40, No. 1, (1992), 159-168, doi: 10.1109/78.157191.
  32. Papa, J. P., Fonseca, L. M., and de Carvalho, L. A., “Projections onto convex sets through particle swarm optimization and its application for remote sensing image restoration”, Pattern Recognition Letters, Vol. 31, No. 13, (2010), 1876-1886, doi: 10.1016/j.patrec.2010.02.012.
  33. Kennedy, J., and Eberhart, R., “Particle swarm optimization”, In Proceedings of ICNN'95-international conference on neural networks, Vol. 4, (1995), 1942-1948, doi: 10.1109/ICNN.1995.488968.
  34. Eberhart, R. C., Shi, Y., and Kennedy, J. “Swarm intelligence”, Elsevier, (2001), ISBN: 9781498741071.
  35. Tanweer, M. R., Suresh, S., and Sundararajan, N., “Self-regulating particle swarm optimization algorithm”, Information Sciences, Vol. 294, (2015), 182-202, doi: 10.1016/j.ins.2014.09.053.
  36. B. Morini, M. Porcelli, and R. Chan, “A reduced Newton method for constrained linear least-squares problems”, Journal of Computational and Applied Mathematics, Vol. 233, 2200–2212, 2010, doi: 10.1016/
  37. Bouhamidi, Abderrahman, Rentsen Enkhbat, and Khalide Jbilou. “Conditional gradient Tikhonov method for a convex optimization problem in image restoration”, Journal of Computational and Applied Mathematics, Vol. 255, (2014), 580-592, doi: 10.1016/
  38. Rashno, Abdolreza, Foroogh Sadat Tabataba, and Saeed Sadri. “Image restoration with regularization convex optimization approach”, Journal of Electrical Systems and Signals, Vol. 2, No. 2, (2014), 32-36, doi: 10.48550/arXiv.1902.02059.