Hybrid Beamforming for Dual Functioning Multi-input Multi-output Radar using Dimension Reduced-baseband Piecewise Successive Approximation

Document Type : Original Article

Authors

1 Electrical Engineering Department, Veermata Jijabai Technological Institute, Mumbai, India

2 Electronics and Telecommunication engg. Department, Sinhgad College of Engineering, Pune, India

Abstract

A reliable and effective hybrid beamforming design for dual functioning multi-input multi-output (MIMO) radar is a challenging research problem because of the concerns related to limited user capacity, interference, and lack of performance trade-off. Due to the shortage of available spectrum, radar frequency spectrum sharing has become vital in emerging 5G communication systems. This will reduce spectrum congestion, therefore receiving significant attention. The existing hybrid beamforming methods reduce the radio frequency (RF)  chains but improving user capacity is still a major concern. Future dual radar-communication designs are having challenges in enhancing the user capacity with minimum RF chains, interference mitigation, and hardware cost reduction. This work proposes a novel approach to a hybrid beamforming mechanism for dual-functioning MIMO radar. This mechanism uses the dimension-reduced baseband piecewise successive approximation integrated with a digital precoder. At the analog precoder, the piecewise successive iterative approximation approach is applied to perform the analog beamforming. The novel hybrid beamforming with lens antenna array integration improves the user capacity and reduces power requirement, interference, and expenses. The simulation results showed improved performances compared to existing state-of-the-art methods in terms of bit error rate, spectral efficiency, energy efficiency, and response time.

Keywords

Main Subjects


  1. Paul, B., Chiriyath, A.R. and Bliss, D.W., "Survey of rf communications and sensing convergence research", IEEE Access, Vol. 5, (2016), 252-270. doi: 10.1109/ACCESS.2016.2639038.
  2. Johnston, J., Venturino, L., Grossi, E., Lops, M. and Wang, X., "Mimo ofdm dual-function radar-communication under error rate and beampattern constraints", IEEE Journal on Selected Areas in Communications, Vol. 40, No. 6, (2022), 1951-1964. doi: 10.1109/JSAC.2022.3156651.
  3. Tamaddondar, M. and Noori, N., "Hybrid massive mimo channel model based on edge detection of interacting objects and cluster concept", International Journal of Engineering, Transactions B: Applications, Vol. 35, No. 2, (2022), 471-480. doi: 10.5829/ije.2022.35.02b.23.
  4. Martone, A. and Amin, M., "A view on radar and communication systems coexistence and dual functionality in the era of spectrum sensing", Digital Signal Processing, Vol. 119, (2021), 103135. https://doi.org/10.1016/j.dsp.2021.103135
  5. Liu, F., Masouros, C., Petropulu, A.P., Griffiths, H. and Hanzo, L., "Joint radar and communication design: Applications, state-of-the-art, and the road ahead", IEEE Transactions on Communications, Vol. 68, No. 6, (2020), 3834-3862. doi: 10.1109/TCOMM.2020.2973976.
  6. Gregorio, F., González, G., Schmidt, C. and Cousseau, J., Massive mimo systems, in Signal processing techniques for power efficient wireless communication systems. 2020, Springer.193-216.
  7. Ali, E., Ismail, M., Nordin, R. and Abdulah, N.F., "Beamforming techniques for massive mimo systems in 5g: Overview, classification, and trends for future research", Frontiers of Information Technology & Electronic Engineering, Vol. 18, No. 6, (2017), 753-772. doi. https: //doi.org /10.1631 /FITEE.1601817
  8. Londhe, G.D. and Hendre, V.S., "Review on beamforming techniques for millimeter wave massive mimo", in Proceedings of the International e-Conference on Intelligent Systems and Signal Processing, Springer., (2022), 291-303.
  9. Ying, F., Ahmed, F. and Li, R., "A multiband multiple-input multiple-output antenna system for long term evolution and wireless local area networks handsets", International Journal of Engineering, Vol. 29, No. 8, (2016), 1087-1093. doi: 10.5829/idosi.ije.2016.29.08b.08.
  10. Liu, F. and Masouros, C., "Hybrid beamforming with sub-arrayed mimo radar: Enabling joint sensing and communication at mmwave band", in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE., (2019), 7770-7774.
  11. Dilli, R., "Performance analysis of multi user massive mimo hybrid beamforming systems at millimeter wave frequency bands", Wireless Networks, Vol. 27, No. 3, (2021), 1925-1939. https://doi.org/10.1007/s11276-021-02546-w
  12. Payami, S., Ghoraishi, M., Dianati, M. and Sellathurai, M., "Hybrid beamforming with a reduced number of phase shifters for massive mimo systems", IEEE Transactions on Vehicular Technology, Vol. 67, No. 6, (2018), 4843-4851. doi: 10.1109/TVT.2018.2807921.
  13. Jiang, Z.-M., Zhang, P., Rihan, M., Huang, L. and Zhang, J., "Maximum likelihood approach to doa estimation using lens antenna array", EURASIP Journal on Wireless Communications and Networking, Vol. 2019, No. 1, (2019), 1-7. https://doi.org/10.1186/s13638-019-1549-3
  14. Faridani, M. and Ghalamkari, B., "Four-element lens array antenna for advanced point-to-(multi) point high-bandwidth wireless communication", Journal of Computational Electronics, Vol. 17, No. 3, (2018), 1082-1089. https://doi.org/10.1007/s10825-018-1204-y
  15. Ansarudin, F., Abd Rahman, T., Yamada, Y., Rahman, N.H.A. and Kamardin, K., "Multi beam dielectric lens antenna for 5g base station", Sensors, Vol. 20, No. 20, (2020), 5849. https://doi.org/10.3390/s20205849
  16. dos Santos, R.A., Lobão da Silva Fré, G., da Silva, L.G., Paiva, M.C.d. and Spadoti, D.H., "Ultra-wideband dielectric lens antennas for beamsteering systems", International Journal of Antennas and Propagation, Vol. 2019, (2019). doi. https://doi.org/10.1155/2019/6732758
  17. Khalid, F., "Hybrid beamforming for millimeter wave massive multiuser mimo systems using regularized channel diagonalization", IEEE Wireless Communications Letters, Vol. 8, No. 3, (2018), 705-708. doi: 10.1109/LWC.2018.2886882.
  18. Zhang, Y., Du, J., Chen, Y., Han, M. and Li, X., "Optimal hybrid beamforming design for millimeter-wave massive multi-user mimo relay systems", IEEE Access, Vol. 7, (2019), 157212-157225. doi: 10.1109/ACCESS.2019.2949786.
  19. Du, J., Xu, W., Zhao, C. and Vandendorpe, L., "Weighted spectral efficiency optimization for hybrid beamforming in multiuser massive mimo-ofdm systems", IEEE Transactions on Vehicular Technology, Vol. 68, No. 10, (2019), 9698-9712. doi: 10.1109/LWC.2018.2886882.
  20. Lee, Y.-R., Lee, W.-S., Jung, J.-S., Park, C.-Y., You, Y.-H. and Song, H.-K., "Hybrid beamforming with reduced rf chain based on pzf and pd-noma in mmwave massive mimo systems", IEEE Access, Vol. 9, (2021), 60695-60703. doi: 10.1109/ACCESS.2021.3073502.
  21. Özbek, B., Erdoğan, O., Busari, S.A. and Gonzalez, J., "Hybrid beamforming strategies for secure multicell multiuser mmwave mimo communications", Physical Communication, Vol. 46, (2021), 101319. https://doi.org/10.1016/j.phycom.2021.101319
  22. Zhai, X., Chen, X., Xu, J. and Ng, D.W.K., "Hybrid beamforming for massive mimo over-the-air computation", IEEE Transactions on Communications, Vol. 69, No. 4, (2021), 2737-2751. doi: 10.1109/TCOMM.2021.3051397.
  23. Zhan, J. and Dong, X., "Interference cancellation aided hybrid beamforming for mmwave multi-user massive mimo systems", IEEE Transactions on Vehicular Technology, Vol. 70, No. 3, (2021), 2322-2336. doi: 10.1109/TVT.2021.3057547.
  24. Gao, F., Wang, B., Xing, C., An, J. and Li, G.Y., "Wideband beamforming for hybrid massive mimo terahertz communications", IEEE Journal on Selected Areas in Communications, Vol. 39, No. 6, (2021), 1725-1740. doi: 10.1109/JSAC.2021.3071822.
  25. Vlachos, E. and Thompson, J., "Energy-efficiency maximization of hybrid massive mimo precoding with random-resolution dacs via rf selection", IEEE Transactions on Wireless Communications, Vol. 20, No. 2, (2020), 1093-1104. doi: 10.1109/TWC.2020.3030772.
  26. Fortunati, S., Sanguinetti, L., Gini, F., Greco, M.S. and Himed, B., "Massive mimo radar for target detection", IEEE Transactions on Signal Processing, Vol. 68, (2020), 859-871. doi: 10.1109/TSP.2020.2967181.
  27. Ioushua, S.S. and Eldar, Y.C., "A family of hybrid analog–digital beamforming methods for massive mimo systems", IEEE Transactions on Signal Processing, Vol. 67, No. 12, (2019), 3243-3257. doi: 10.1109/TSP.2019.2911255.
  28. Zhang, Y., Du, J., Chen, Y., Li, X., Rabie, K.M. and Kharel, R., "Near-optimal design for hybrid beamforming in mmwave massive multi-user mimo systems", IEEE Access, Vol. 8, (2020), 129153-129168. doi: 10.1109/ACCESS.2020.3009238.
  29. Zhang, Y., Du, J., Chen, Y., Li, X., Rabie, K.M. and Khkrel, R., "Dual-iterative hybrid beamforming design for millimeter-wave massive multi-user mimo systems with sub-connected structure", IEEE Transactions on Vehicular Technology, Vol. 69, No. 11, (2020), 13482-13496. doi: 10.1109/TVT.2020.3029080.
  30. Liu, F., Zhou, L., Masouros, C., Li, A., Luo, W. and Petropulu, A., "Toward dual-functional radar-communication systems: Optimal waveform design", IEEE Transactions on Signal Processing, Vol. 66, No. 16, (2018), 4264-4279. doi: 10.1109/TSP.2018.2847648.