In Silico Analysis of Stem Cells Mechanical Stimulations for Mechnoregulation Toward Cardiomyocytes

Document Type : Original Article

Authors

Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

Abstract

Because of the ability of stem cells to self-renew and differentiate into cardiomyocytes, they are optimal cell sources for cardiac tissue engineering. Since heart cells experience cyclic strain and pulsatile flow in vivo, these mechanical stimuli are essential factors for stem cell differentiation. This study aimed to investigate the effect of a combination of pulsatile flow and cyclic strain on the shear stress created on the embryonic stem cell layer with a elastic property in a perfusion bioreactor by using the fluid-solid interaction (FSI) method. In this study, the frequency and stress phase angle had been assumed as a variable. The results show that the maximum shear stress at frequencies of 0.33, and 1 Hz and with frequency differences in cyclic strain (0.33 Hz) and pulsatile flow (1 Hz) are 0.00562, 0.02, and 0.01 dyn/cm², respectively. Moreover, in the stress phase angles 0, , and , the maximum shear stress are equal to 0.00562, 0.009, and 0.014 dyn/cm², respectively. The results of this study can be an effective step in developing cardiac tissue engineering and a better understanding of the effects of mechanical stimuli on stem cell differentiation.

Keywords

Main Subjects


  1. Zammaretti, P. and Jaconi, M., "Cardiac tissue engineering: Regeneration of the wounded heart", Current Opinion in Biotechnology, Vol. 15, No. 5, (2004), 430-434. doi: 10.1016/j.copbio.2004.08.007.
  2. Ye, F., Yuan, F., Li, X., Cooper, N., Tinney, J.P. and Keller, B.B., "Gene expression profiles in engineered cardiac tissues respond to mechanical loading and inhibition of tyrosine kinases", Physiological Reports, Vol. 1, No. 5, (2013). doi: 10.1002/phy2.78.
  3. Breckwoldt, K., Weinberger, F. and Eschenhagen, T., "Heart regeneration", Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, Vol. 1863, No. 7, (2016), 1749-1759. https://doi.org/10.1016/j.bbamcr.2015.11.010.
  4. Grayson, W.L., Martens, T.P., Eng, G.M., Radisic, M. and Vunjak-Novakovic, G., "Biomimetic approach to tissue engineering", in Seminars in cell & developmental biology, Elsevier. Vol. 20, No. 6, (2009), 665-673. doi: 10.1016/j.semcdb.2008.12.008.
  5. Mueller, P., Lemcke, H. and David, R., "Stem cell therapy in heart diseases–cell types, mechanisms and improvement strategies", Cellular Physiology and Biochemistry, Vol. 48, No. 6, (2018), 2607-2655. doi: 10.1159/000492704.
  6. Gandhimathi, C., Muthukumaran, P. and Srinivasan, D., Nanofiber composites in cardiac tissue engineering, in Nanofiber composites for biomedical applications. 2017, Elsevier.411-453. https://doi.org/10.1016/B978-0-08-100173-8.00017-X.
  7. Vining, K.H. and Mooney, D.J., "Mechanical forces direct stem cell behaviour in development and regeneration", Nature Reviews Molecular Cell Biology, Vol. 18, No. 12, (2017), 728-742. https://doi.org/10.1038/nrm.2017.108.
  8. Kaitsuka, T. and Hakim, F., "Response of pluripotent stem cells to environmental stress and its application for directed differentiation", Biology, Vol. 10, No. 2, (2021), 84. https://doi.org/10.3390/biology10020084.
  9. Huang, Y., Jia, X., Bai, K., Gong, X. and Fan, Y., "Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells", Archives of Medical Research, Vol. 41, No. 7, (2010), 497-505. doi: 10.1016/j.arcmed.2010.10.002.
  10. Saucerman, J.J., Tan, P.M., Buchholz, K.S., McCulloch, A.D. and Omens, J.H., "Mechanical regulation of gene expression in cardiac myocytes and fibroblasts", Nature Reviews Cardiology, Vol. 16, No. 6, (2019), 361-378. doi: 10.1038/s41569-019-0155-8.
  11. Mihic, A., Li, J., Miyagi, Y., Gagliardi, M., Li, S.H., Zu, J., Weisel, R.D., Keller, G. and Li, R.K., "The effect of cyclic stretch on maturation and 3d tissue formation of human embryonic stem cell-derived cardiomyocytes", Biomaterials, Vol. 35, No. 9, (2014), 2798-2808. doi: 10.1016/j.biomaterials.2013.12.052.
  12. Tulloch, N.L., Muskheli, V., Razumova, M.V., Korte, F.S., Regnier, M., Hauch, K.D., Pabon, L., Reinecke, H. and Murry, C.E., "Growth of engineered human myocardium with mechanical loading and vascular coculture", Circulation Research, Vol. 109, No. 1, (2011), 47-59. doi: 10.1161/circresaha.110.237206.
  13. Dvir, T., Levy, O., Shachar, M., Granot, Y. and Cohen, S., "Activation of the erk1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly", Tissue Engineering, Vol. 13, No. 9, (2007), 2185-2193. https://doi.org/10.1089/ten.2006.0364.
  14. Shen, N., Knopf, A., Westendorf, C., Kraushaar, U., Riedl, J., Bauer, H., Pöschel, S., Layland, S.L., Holeiter, M. and Knolle, S., "Steps toward maturation of embryonic stem cell-derived cardiomyocytes by defined physical signals", Stem Cell Reports, Vol. 9, No. 1, (2017), 122-135. doi: 10.1016/j.stemcr.2017.04.021.
  15. Henderson, K., Sligar, A.D., Le, V.P., Lee, J. and Baker, A.B., "Biomechanical regulation of mesenchymal stem cells for cardiovascular tissue engineering", Advanced Healthcare Materials, Vol. 6, No. 22, (2017), 1700556. doi: 10.1155/2019/1847098.
  16. Band Band, H., Arbabtafti, M., Nahvi, A. and Zarei-Ghanavati, M., "Finite element simulation and experimental test of ovine corneal tissue cutting process in cataract surgery operation", International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 5, (2021), 1321-1328. doi: 10.5829/IJE.2021.34.05B.27.
  17. Sarparast, Z., Abdoli, R., Rahbari, A., Varmazyar, M. and Reza Kashyzadeh, K., "Experimental and numerical analysis of permeability in porous media", International Journal of Engineering, , Transactions B: Applications, Vol. 33, No. 11, (2020), 2408-2415. doi: 10.5829/IJE.2020.33.11B.31.
  18. Hezarjaribi, Y., Yari Esbouei, M. and Azizollah Ganji, B., "Simulation and modeling of a high sensitivity micro-electro-mechanical systems capacitive pressure sensor with small size and clamped square diaphragm", International Journal of Engineering, Transactions C: Aspects,, Vol. 30, No. 6, (2017), 846-850. doi: 10.5829/ije.2017.30.06c.04.
  19. Visone, R., Talò, G., Lopa, S., Rasponi, M. and Moretti, M., "Enhancing all-in-one bioreactors by combining interstitial perfusion, electrical stimulation, on-line monitoring and testing within a single chamber for cardiac constructs", Scientific Reports, Vol. 8, No. 1, (2018), 1-13. doi: 10.1038/s41598-018-35019-w.
  20. Shen, N., Riedl, J.A., Berrio, D.A.C., Davis, Z., Monaghan, M.G., Layland, S.L., Hinderer, S. and Schenke-Layland, K., "A flow bioreactor system compatible with real-time two-photon fluorescence lifetime imaging microscopy", Biomedical Materials, Vol. 13, No. 2, (2018), 024101. doi: 10.1088/1748-605X/aa9b3c.
  21. Ma, G., Petersen, E., Leong, K.W. and Liao, K., "Mechanical behavior of human embryonic stem cell pellet under unconfined compression", Biomechanics and Modeling in Mechanobiology, Vol. 11, No. 5, (2012), 703-714. doi: 10.1007/s10237-011-0344-9.
  22. Consolo, F., Bariani, C., Mantalaris, A., Montevecchi, F., Redaelli, A. and Morbiducci, U., "Computational modeling for the optimization of a cardiogenic 3d bioprocess of encapsulated embryonic stem cells", Biomechanics and Modeling in Mechanobiology, Vol. 11, No. 1-2, (2012), 261-277. https://doi.org/10.1007/s10237-011-0308-0.
  23. Tremblay, D., Zigras, T., Cartier, R., Leduc, L., Butany, J., Mongrain, R. and Leask, R.L., "A comparison of mechanical properties of materials used in aortic arch reconstruction", The Annals of Thoracic Surgery, Vol. 88, No. 5, (2009), 1484-1491. doi: 10.1016/j.athoracsur.2009.07.023.
  24. Shahidan, S., "Concrete incorporated with optimum percentages of recycled polyethylene terephthalate (PET) bottle fiber", International Journal of Integrated Engineering, Vol. 10, No. 1, (2018).
  25. Kaplan, L., Høye, E., Balling, P., Muren, L., Petersen, J., Poulsen, P., Yates, E. and Skyt, P., "Determining the mechanical properties of a radiochromic silicone-based 3d dosimeter", Physics in Medicine & Biology, Vol. 62, No. 14, (2017), 5612. doi: 10.1088/1361-6560/aa70cd.
  26. Udupa, G., Sreedharan, P., Sai Dinesh, P. and Kim, D., "Asymmetric bellow flexible pneumatic actuator for miniature robotic soft gripper", Journal of Robotics, Vol. 2014, (2014). https://doi.org/10.1155/2014/902625.
  27. Chun, Y.W., Voyles, D.E., Rath, R., Hofmeister, L.H., Boire, T.C., Wilcox, H., Lee, J.H., Bellan, L.M., Hong, C.C. and Sung, H.-J., "Differential responses of induced pluripotent stem cell-derived cardiomyocytes to anisotropic strain depends on disease status", Journal of Biomechanics, Vol. 48, No. 14, (2015), 3890-3896. doi: 10.1016/j.jbiomech.2015.09.028.
  28. Shojaei, S., Tafazzoli-Shadpour, M., Shokrgozar, M.A., Haghighipour, N. and Jahromi, F.H., "Stress phase angle regulates differentiation of human adipose-derived stem cells toward endothelial phenotype", Progress in Biomaterials, Vol. 7, No. 2, (2018), 121-131. doi: 10.1007/s40204-018-0090-5.
  29. Qamar, A., Seda, R. and Bull, J.L., "Pulsatile flow past an oscillating cylinder", Physics of Fluids, Vol. 23, No. 4, (2011), 041903. https://doi.org/10.1063/1.3576186.
  30. Altenbach, J., "Book review: Martin h. Sadd, elasticity–theory, applications, and numerics", ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, Vol. 85, No. 12, (2005), 907-908. https://doi.org/10.1002/zamm.200590048.
  31. Bathe, K.-J. and Zhang, H., "A mesh adaptivity procedure for cfd and fluid-structure interactions", Computers & Structures, Vol. 87, No. 11-12, (2009), 604-617. https://doi.org/10.1016/j.compstruc.2009.01.017.
  32. Irfan, M., Waraich, A.S., Ahmed, S. and Ali, Y., "Characterization of various plant-produced asphalt concrete mixtures using dynamic modulus test", Advances in Materials Science and Engineering, Vol. 2016, (2016). https://doi.org/10.1155/2016/5618427.
  33. Donea, J., Huerta, A., Ponthot, J.P. and Rodríguez‐Ferran, A., "Arbitrary l agrangian–e ulerian methods", Encyclopedia of Computational Mechanics Second Edition, (2017), 1-23. https://doi.org/10.1002/9781119176817.ecm2009.
  34. Mannhardt, I., Marsano, A. and Teuschl, A. "Perfusion bioreactors for prevascularization strategies in cardiac tissue engineering", Vascularization for Tissue Engineering and Regenerative Medicine, (2021), 475-488 doi: 10.1007/978-3-319-54586-8_14.
  35. Black, L.D., 3rd, Meyers, J.D., Weinbaum, J.S., Shvelidze, Y.A. and Tranquillo, R.T., "Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification", Tissue Engineering Part A, Vol. 15, No. 10, (2009), 3099-3108. doi: 10.1089/ten.TEA.2008.0502.
  36. Lemoine, M.D., Mannhardt, I., Breckwoldt, K., Prondzynski, M., Flenner, F., Ulmer, B., Hirt, M.N., Neuber, C., Horváth, A. and Kloth, B., "Human ipsc-derived cardiomyocytes cultured in 3d engineered heart tissue show physiological upstroke velocity and sodium current density", Scientific Reports, Vol. 7, No. 1, (2017), 1-11. https://doi.org/10.1038/s41598-017-05600-w.
  37. Kharaziha, M., Memic, A., Akbari, M., Brafman, D.A. and Nikkhah, M., "Nano‐enabled approaches for stem cell‐based cardiac tissue engineering", Advanced Healthcare Materials, Vol. 5, No. 13, (2016), 1533-1553.DOI: 10.1002/adhm.201600088.