Study on Polycaprolactone Coated Hierarchical Meso/ Macroporous Titania Scaffolds for Bone Tissue Engineering

Document Type : Original Article

Authors

1 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Iran

Abstract

In this study, the effect of polycaprolactone (PCL) coating on the mechanical strength, cell behavior and cell attachment of the hierarchical meso/macroporous Titania scaffold were investigated. Titania scaffold as the substrate was fabricated through the evaporation-induced self-assembly coupled with the foamy method. Then prepared scaffolds were coated by polycaprolactone solution with three different weight percentages by the dip-coating method. SAXS, WAXRD, SEM, compressive strength, MTT and cell attachment test were applied to characterized the samples. Based on XRD results, as polycaprolactone concentration increased, the intensity of the crystalline polycaprolactone phase increased while the TiO2 peak intensity decreased due to the covering of mesoporous titania by polycaprolactone. Compressive strength showed that by increasing polycaprolactone percent, the porosity decrease from 89.5 to 73.8 % which caused increasing strength from 0.2 to 0.79 MPa. The SEM results illustrated that by increasing polycaprolactone concentration from 1.2 to 1.5 wt%, the macrospores were filled by polycaprolactone. In this regard, The sample containing 1wt% polycaprolactone was choosen as the selective sample. Also, the MTT test reported a small trace of cytotoxicity in contact with the L929 mouse fibroblast cells. The cell attachment test that was performed by using MG63 cells, showed that the coated samples provided the suitable substrate for cells to attach and also showed cell viability on the surface of the coated substrate. Overall, according to the results, the hierarchical meso/macroporous Titania scaffold coated with 1 wt% polycaprolactone, could have good potential to be used in tissue engineering.

Keywords


  1. Ralston, S.H., "Bone structure and metabolism", Medicine, Vol. 41, No. 10, (2013), 581-585. https://doi.org/10.1016/j.mpmed.2013.07.007
  2. Seeman, E. and Delmas, P.D., "Bone quality—the material and structural basis of bone strength and fragility", New England Journal of Medicine, Vol. 354, No. 21, (2006), 2250-2261. doi: 10.1056/NEJMra053077.
  3. Müller, R., "Hierarchical microimaging of bone structure and function", Nature Reviews Rheumatology, Vol. 5, No. 7, (2009), 373-381. https://www.nature.com/articles/nrrheum.2009.107
  4. Kiuru, M.J., Pihlajamäki, H. and Ahovuo, J., "Bone stress injuries", Acta Radiologica, Vol. 45, No. 3, (2004), 000-000. doi: 10.1080/02841850410004724.
  5. Mistry, A.S. and Mikos, A.G., "Tissue engineering strategies for bone regeneration", Regenerative Medicine II, (2005), 1-22. doi: 10.1007/b99997.
  6. Porter, J.R., Ruckh, T.T. and Popat, K.C., "Bone tissue engineering: A review in bone biomimetics and drug delivery strategies", Biotechnology Progress, Vol. 25, No. 6, (2009), 1539-1560. doi: 10.1002/btpr.246.
  7. Jiang, S., Wang, M. and He, J., "A review of biomimetic scaffolds for bone regeneration: Toward a cell‐free strategy", Bioengineering & Translational Medicine, Vol. 6, No. 2, (2021), e10206. doi: 10.1002/btm2.10206.
  8. Zimmermann, G. and Moghaddam, A., "Allograft bone matrix versus synthetic bone graft substitutes", Injury, Vol. 42, (2011), S16-S21. doi: 10.1016/j.injury.2011.06.199.
  9. Rezwan, K., Chen, Q., Blaker, J.J. and Boccaccini, A.R., "Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering", Biomaterials, Vol. 27, No. 18, (2006), 3413-3431. https://doi.org/10.1016/j.biomaterials.2006.01.039
  10. Bose, S., Roy, M. and Bandyopadhyay, A., "Recent advances in bone tissue engineering scaffolds", Trends in Biotechnology, Vol. 30, No. 10, (2012), 546-554. doi. https://doi.org/10.1016/j.tibtech.2012.07.005
  11. Chen, R.R. and Mooney, D.J., "Polymeric growth factor delivery strategies for tissue engineering", Pharmaceutical Research, Vol. 20, No. 8, (2003), 1103-1112. doi: 10.1023/a:1025034925152.
  12. Mohamad Yunos, D., Bretcanu, O. and Boccaccini, A.R., "Polymer-bioceramic composites for tissue engineering scaffolds", Journal of Materials Science, Vol. 43, No. 13, (2008), 4433-4442. doi: 10.1517/17425247.2013.808183.
  13. Peroglio, M., Gremillard, L., Chevalier, J., Chazeau, L., Gauthier, C. and Hamaide, T., "Toughening of bio-ceramics scaffolds by polymer coating", Journal of the European Ceramic Society, Vol. 27, No. 7, (2007), 2679-2685. https://doi.org/10.1016/j.jeurceramsoc.2006.10.016
  14. Gómez-Cerezo, M.N., Peña, J., Ivanovski, S., Arcos, D., Vallet-Regí, M. and Vaquette, C., "Multiscale porosity in mesoporous bioglass 3d-printed scaffolds for bone regeneration", Materials Science and Engineering: C, Vol. 120, (2021), 111706. https://doi.org/10.1016/j.msec.2020.111706
  15. Yan, X., Deng, H., Huang, X., Lu, G., Qiao, S., Zhao, D. and Yu, C., "Mesoporous bioactive glasses. I. Synthesis and structural characterization", Journal of non-crystalline Solids, Vol. 351, No. 40-42, (2005), 3209-3217. https://doi.org/10.1016/j.jnoncrysol.2005.08.024
  16. Tang, H., Guo, Y., Jia, D. and Zhou, Y., "High bone-like apatite-forming ability of mesoporous titania films", Microporous and Mesoporous Materials, Vol. 131, No. 1-3, (2010), 366-372. https://doi.org/10.1016/j.micromeso.2010.01.015
  17. Li, Z., He, Y., Klausen, L.H., Yan, N., Liu, J., Chen, F., Song, W., Dong, M. and Zhang, Y., "Growing vertical aligned mesoporous silica thin film on nanoporous substrate for enhanced degradation, drug delivery and bioactivity", Bioactive Materials, Vol. 6, No. 5, (2021), 1452-1463. https://doi.org/10.1016/j.bioactmat.2020.10.026
  18. Kulkarni, M., Mazare, A., Gongadze, E., Perutkova, Š., Kralj-Iglič, V., Milošev, I., Schmuki, P., Iglič, A. and Mozetič, M., "Titanium nanostructures for biomedical applications", Nanotechnology, Vol. 26, No. 6, (2015), 062002. doi: 10.1088/0957-4484/26/6/062002.
  19. Haugen, H., Will, J., Köhler, A., Hopfner, U., Aigner, J. and Wintermantel, E., "Ceramic TiO2-foams: Characterisation of a potential scaffold", Journal of the European Ceramic Society, Vol. 24, No. 4, (2004), 661-668. https://doi.org/10.1016/S0955-2219(03)00255-3
  20. Loca, D., Narkevica, I. and Ozolins, J., "The effect of TiO2 nanopowder coating on in vitro bioactivity of porous TiO2 scaffolds", Materials Letters, Vol. 159, (2015), 309-312. https://doi.org/10.1016/j.matlet.2015.07.017
  21. Zhang, P., Zhang, Z., Li, W. and Zhu, M., "Effect of ti-oh groups on microstructure and bioactivity of TiO2 coating prepared by micro-arc oxidation", Applied Surface Science, Vol. 268, (2013), 381-386. https://doi.org/10.1016/j.apsusc.2012.12.105
  22. Tiainen, H., Wohlfahrt, J.C., Verket, A., Lyngstadaas, S.P. and Haugen, H.J., "Bone formation in TiO2 bone scaffolds in extraction sockets of minipigs", Acta Biomaterialia, Vol. 8, No. 6, (2012), 2384-2391. https://doi.org/10.1016/j.actbio.2012.02.020
  23. Haugen, H.J., Monjo, M., Rubert, M., Verket, A., Lyngstadaas, S.P., Ellingsen, J.E., Rønold, H.J. and Wohlfahrt, J.C., "Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model", Acta Biomaterialia, Vol. 9, No. 2, (2013), 5390-5399. https://doi.org/10.1016/j.actbio.2012.09.009
  24. Mirhadi, S.M., Nemati, N.H., Tavangarian, F. and Joupari, M.D., "Fabrication of hierarchical meso/macroporous TiO2 scaffolds by evaporation-induced self-assembly technique for bone tissue engineering applications", Materials Characterization, Vol. 144, (2018), 35-41. https://doi.org/10.1016/j.matchar.2018.06.035
  25. Liu, J., Hu, X., Dai, H., San, Z., Wang, F., Ren, L. and Li, G., "Polycaprolactone/calcium sulfate whisker/barium titanate piezoelectric ternary composites for tissue reconstruction", Advanced Composites Letters, Vol. 29, (2020), 2633366X19897923. https://doi.org/10.1177/2633366X19897923
  26. Alves, M.M., Santos, C. and Montemor, M., "Improved corrosion resistance on Mg-2Ca alloy with TiO2 nanoparticles embedded in a polycaprolactone (pcl) coating", Applied Surface Science Advances, Vol. 9, (2022), 100257. https://doi.org/10.1016/j.apsadv.2022.100257
  27. Singh, N., Batra, U., Kumar, K. and Mahapatro, A., "Evaluation of corrosion resistance, mechanical integrity loss and biocompatibility of pcl/ha/TiO2 hybrid coated biodegradable zm21 mg alloy", Journal of Magnesium and Alloys, (2021). https://doi.org/10.1016/j.jma.2021.10.004
  28. Jariya, S.I., Babu, A.A., Narayanan, T.S., Vellaichamy, E. and Ravichandran, K., "Development of a novel smart carrier for drug delivery: Ciprofloxacin loaded vaterite/reduced graphene oxide/pcl composite coating on TiO2 nanotube coated titanium", Ceramics International, Vol. 48, No. 7, (2022), 9579-9594. https://doi.org/10.1016/j.ceramint.2021.12.156
  29. Khoshroo, K., Kashi, T.S.J., Moztarzadeh, F., Tahriri, M., Jazayeri, H.E. and Tayebi, L., "Development of 3d pcl microsphere/tio2 nanotube composite scaffolds for bone tissue engineering", Materials Science and Engineering: C, Vol. 70, (2017), 586-598. https://doi.org/10.1016/j.msec.2016.08.081
  30. De Santis, R., Catauro, M., Di Silvio, L., Manto, L., Raucci, M.G., Ambrosio, L. and Nicolais, L., "Effects of polymer amount and processing conditions on the in vitro behaviour of hybrid titanium dioxide/polycaprolactone composites", Biomaterials, Vol. 28, No. 18, (2007), 2801-2809. https://doi.org/10.1016/j.biomaterials.2007.02.014
  31. Catauro, M., Papale, F. and Bollino, F., "Characterization and biological properties of TiO2/pcl hybrid layers prepared via sol–gel dip coating for surface modification of titanium implants", Journal of Non-crystalline Solids, Vol. 415, (2015), 9-15. https://doi.org/10.1016/j.jnoncrysol.2014.12.008
  32. Gupta, K.K., Kundan, A., Mishra, P.K., Srivastava, P., Mohanty, S., Singh, N.K., Mishra, A. and Maiti, P., "Retracted article: Polycaprolactone composites with TiO2 for potential nanobiomaterials: Tunable properties using different phases", Physical Chemistry Chemical Physics, Vol. 14, No. 37, (2012), 12844-12853. https://doi.org/10.1039/C2CP41789H
  33. Hassanzadeh Nemati, N. and Mirhadi, S.M., "Synthesis and characterization of highly porous TiO2 scaffolds for bone defects", International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 1, (2020), 134-140. doi: 10.5829/ije.2020.33.01a.15.
  34. Catauro, M., Bollino, F., Papale, F. and Lamanna, G., " TiO2 /pcl hybrid layers prepared via sol-gel dip coating for the surface modification of titanium implants: Characterization and bioactivity evaluation", in Applied Mechanics and Materials, Trans Tech Publ. Vol. 760, (2015), 353-358.
  35. Li, H., Wang, J., Li, H., Yin, S. and Sato, T., "High thermal stability thick wall mesoporous titania thin films", Materials Letters, Vol. 63, No. 18-19, (2009), 1583-1585. https://doi.org/10.1016/j.matlet.2009.04.017
  36. Sownthari, K. and Suthanthiraraj, S.A., "Synthesis and characterization of an electrolyte system based on a biodegradable polymer", Express Polymer Letters, Vol. 7, No. 6, (2013). doi: 10.3144/expresspolymlett.2013.46.
  37. Hamm, J.B., Ambrosi, A., Pollo, L.D., Marcilio, N.R. and Tessaro, I.C., "Thin polymer layer-covered porous alumina tubular membranes prepared via a dip-coating/phase-inversion process", Materials Chemistry and Physics, Vol. 265, (2021), 124511. https://doi.org/10.1016/j.matchemphys.2021.124511
  38. Kim, H.-W., Knowles, J.C. and Kim, H.-E., "Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic vancomycin release", Journal of Materials science: Materials in Medicine, Vol. 16, No. 3, (2005), 189-195. doi: 10.1007/s10856-005-6679-y.
  39. Kim, H.-W., Knowles, J.C. and Kim, H.-E., "Hydroxyapatite/poly (ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery", Biomaterials, Vol. 25, No. 7-8, (2004), 1279-1287. https://doi.org/10.1016/j.biomaterials.2003.07.003