Effect of Graphite Addition on the Microstructure, Mechanical Properties and Oxidation Resistance of HfB2-SiC Composites Prepared by the SPS Method

Document Type : Original Article

Authors

1 Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran

2 Department of Ceramics, Materials and Energy Research Center, Karaj, Iran

Abstract

In this study, HfB2-SiC-graphite composites were fabricated using spark plasma sintering at 1900 ℃ for 10 min. The effect of graphite content on the microstructure and mechanical properties was studied; also, oxidation resistance of the prepared composites was investigated at 1400 ℃ for 32 h. Weight changes and thickness of the formed oxide layer were measured. The relative density, toughness and strength of the SPSed composites increased with raising graphite up 2.5 wt% and then decraesed.  On the other hand, the hardness of the composites was decreased when graphite was added. Oxidation resistance of the composites was, thus, improved following graphite addition up 2.5 wt%, while the ecessive quantity of graphite caused poor oxidation resistance of the composites.

Keywords

Main Subjects


  1. Balak, Z. and Zakeri, M., "Effect of HfB2 on microstructure and mechanical properties of ZrB2-SiC-based composites", International Journal of Refractory Metals and Hard Materials, Vol. 54, (2016), 127-137. doi: 10.1016/j.ijrmhm.2015.07.011
  2. Shojaie-Bahaabad, M. and Hasani-Arefi, A., "Ablation properties of ZrC-SiC-HfB2 ceramic with different amount of carbon fiber under an oxyacetylene flame", Materials Research Express, Vol. 7, (2020), doi: 10.1088/2053-1591/ab70db
  3. Binner, J., Porter, M., Baker, B., Zou, J. and Venkatachalam, V., "Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs – a review", International Materials Reviews, (2019), doi: 10.1080/09506608.2019.1652006
  4. Balak, Z. and Azizieh, M., "Oxidation of ZrB2 -SiC composites at 1600°C : effect of carbides, borides, silicides and chopped carbon fiber", Advanced Ceramics Progress, Vol. 4, (2018), 18-23. doi: 10.30501/ACP.2018.90829
  5. Ghadami, S., Taheri‑Nassaj, E., Baharvandi, H. R. and Ghadami, F., "Improvement of mechanical properties of HfB2‑based composites by incorporating in situ SiC reinforcement", Scientific Reports, (2021). doi: 10.1038/s41598-021-88566-0
  6. Hassan, R., Kundu, R. and Balani, K., "Oxidation behaviour of coarse and fine SiC reinforced ZrB2 at re-entry and atmospheric oxygen pressures", Ceramics International Journal, Vol. 46, (2020), 11056-11065. doi: 10.1016/j.ceramint.2020.01.125
  7. Ghelich, R., Jahannama, M. R., Abdizadeh, H., Torknik, F. S. and Vaezi, M. R., "Hafnium diboride nonwoven mats with porosity/morphology tuned via different heat treatments", Materials Chemistry and Physics, Vol. 248, (2020), doi: 10.1016/j.matchemphys.2020.122876
  8. Tian, Y. H., and Dong, L. H., "Effect of mechanical alloying on sinterability and phase evolution in pressure-less sintered TiB2‒TiC ceramics",  Journal of Materiomics, Vol. 5, No. 4, (2019), 670-678. doi: 10.1016/j.jmat.2019.05.001
  9. Ghadami, S., Taheri-Nassaj, E. and Baharvandi, H. R., "Novel HfB2-SiC-MoSi2 composites by reactive spark plasma sintering", Journal of Alloys and Compounds, Vol. 809, (2019), doi: 10.1016/j.jallcom.2019.151705
  10. Sakkaki, M., Sadegh Moghanlou, F., Vajdi, M. and Shahedi Asl, M., "Numerical simulation of heat transfer during spark plasma sintering of zirconium diboride", Ceramics International, Vol. 46, (2020), 4998-5007. doi: 10.1016/j.ceramint.2019.10.240
  11. Liang, X., Wei-Ming, G., Yan, Z., Yang, Y. and Hua-Tay, L., "Pressureless densification of HfB2-based ceramics using HfB2powders by borothermal reduction", Ceramics International, Vol. 47, No. 23, (2021), 33922-33925. doi: 10.1016/j.ceramint.2021.08.245
  12. Simonenkoa, E. P., Simonenkoa, N. P. and Lysenkovb, A. S., "Reactive hot pressing of HfB2–SiC–Ta4HfC5 ultra-high temperature ceramics”, Journal of Inorganic Chemistry, Vol. 65, No. 3, (2020), 446-457. doi: 10.1134/S0036023620030146
  13. EL-Wazery, M. S., "Fabrication and characteristics of 8YSZ/Ni functionally graded materials by applying spark plasma sintering procedure", International Journal of Engineering, Transactions C: Aspects, Vol. 27, No. 12, (2014), 1907-1912. doi: 10.5829/idosi.ije.2014.27.12c.14
  14. Mashayekh, S. and Baharvandi, H. R., "Effects of SiC or MoSi2 second phase on the oxide layers structure of HfB2-based composites", Ceramics International Journal, Vol. 43, (2017), 15053-15059. doi: 10.1016/j.ceramint.2017.08.031
  15. Ren, X., Shang, T. and Wang, W., “Dynamic oxidation protective behaviours and mechanisms of HfB2-20wt%SiC composite coating for carbon materials", Journal of the European Ceramic Society, Vol. 39, (2019), 1955-1964. doi: 10.1016/j.jeurceramsoc.2019.01.033
  16. Guerineau, V., Vilmart, G. and Dorval, N., "Comparison of ZrB2-SiC, HfB2-SiC and HfB2-SiC-Y2O3 oxidation mechanisms in air using LIF of BO2 (g)", Corrosion Science, (2019), doi: 10.1016/j.corsci.2019.108278
  17. Ghadami, S., Taheri‑Nassaj, E., Baharvandi, H. R. and Ghadami, F., "Effect of in situ VSi2 and SiC phases on the sintering behaviour and the mechanical properties of HfB2‑based composites", Scientific Reports, (2020), doi: 10.1038/s41598-020-73295-7
  18. Simonenkoa, E. P., Simonenkoa, N. P., Nagornova, I. A. and Sevastyanova, V. G., "Production and oxidation resistance of HfB2–30 vol % SiC composite powders modified with Y3Al5O12", Russian Journal of Inorganic Chemistry, Vol. 65, No. 9, (2020), 1416-1423. doi: 10.1134/S003602362009020X
  19. Wang, P., Li, H., Sun, J.,Yuan, R., Zhang, L., Zhang, Y. and Li, T., "The effect of HfB2 content on the oxidation and thermal shock resistance of SiC coating", Surface and Coatings Technology, Vol. 339, (2018), 124-131. doi: 10.1016/j.surfcoat.2018.02.029
  20. Elizaveta, P., Simonenkoa, N. P., Nikolay, P. Simonenkoa, E. P. and Anatoly, F., "Oxidation of HfB2-SiC-Ta4HfC5 ceramic material by a supersonic flow of dissociated air", Journal of the European Ceramic Society, (2020), doi: 10.1016/j.jeurceramsoc.2020.10.001
  21. Gurcan, K. and Derin, B., "Effect of SiC particle size on the microstructural, mechanical and oxidation properties of In-situ synthesized HfB2-SiC composites", Politeknik Dergisi, Vol. 24, No. 2, (2021), 503-551. doi: 10.2339/politeknik.682256
  22. Ren, X., Mo, H., Wang, W., Feng, P., Guo, L. T. and Li, Z., "Ultra high temperature ceramic HfB2-SiC coating by liquid phase sintering method to protect carbon materials from oxidation", Materials Chemistry and Physics, Vol. 217, (2018), 504-512. doi: 10.1016/j.matchemphys.2018.07.018
  23. Guo, S., "Oxidation and strength retention of HfB2−SiC composite with La2O3 additives", Advances in Applied Ceramics, (2020), doi: 10.1080/17436753.2020.1755510
  24. Opila, E., Levine, S., and Lorincz, J., "Oxidation of ZrB2- And HfB2-based ultra-high temperature ceramics: Effect of Ta additions", Journal of Materials Science, Vol. 39, (2004), 5969-5977. doi: 10.1023/B:JMSC.0000041693.32531.d1
  25. Rezaie, A., Fanrenholtz, W. G. and Hilmas, G. E., "Oxidation of zirconium diboride-silicon carbide at 1500°C at a low partial pressure of oxygen", Journal of the American Ceramic Society, Vol. 89, (2006), 3240-3245. doi: 10.1111/j.1551-2916.2006.01229.x
  26. Rezaie, A., Fahrenholtz, W. G. and Hilmas, G. E., "The effect of a graphite addition on oxidation of ZrB 2-SiC in air at 1500°C", Journal of the European Ceramic Society, Vol. 33, (2013), 413. doi: 10.1016/j.jeurceramsoc.2012.09.016
  27. Zamora, V., Nygren, M., Guiberteau, F. and Ortiz, A. L., "Effect of graphite addition on the spark-plasma sinterability of ZrB2 and ZrB2–SiC ultra-high-temperature ceramics”, Ceramics International, Vol. 40, (2014), 11457-11464. doi: 10.1016/j.ceramint.2014.03.130
  28. Shahedi Asl , M., Zamharir, M. J., Ahmadi, Z. and Parvizi, S., "Effects of nano-graphite content on the characteristics of spark plasma sintered ZrB2–SiC composites", Materials Science and Engineering A, Vol. 716, (2018), 99-106. doi: 10.1016/j.msea.2018.01.038
  29. Azizian-Kalandaragh, Y., Namini, A. S., Ahmadi, Z. and Shahedi Asl, M., "Reinforcing effects of SiC whiskers and carbon nanoparticles in spark plasma sintered ZrB2 matrix composites", Ceramics Internationa, Vol. 44, (2018), 19932-19938. doi: 10.1016/j.ceramint.2018.07.258
  30. Nasiri, Z. and Mashhadi , M., "Microstructure and mechanical behavior of ternary phase ZrB2-SiC-AlN nanocomposite", International Journal of Refractory Metals and Hard Materials, Vol. 78, (2019), 186-192. doi: 10.1016/j.ijrmhm.2018.09.009
  31. Sergey, N., "Processing and characterization of spark plasma sintered SiC-TiB2-TiC powders", Materials, Vol. 15, No. 5, (2022), 1946. doi: 10.3390/ma15051946
  32. Shahriari, M., Zakeri. M., Razavi, M. and Rahimipour, M. R., "Investigation on microstructure and mechanical properties of HfB2-SiC-HfC ternary system with different HfC content prepared by spark plasma sintering", International Journal of Refractory Metals and Hard Materials, Vol. 93, (2020), 105350. doi: 10.1016/j.ijrmhm.2020.105350
  33. Emami, S. M., Salahi, E., Zakeri, M. and Tayebifard, S. A., "Effect of composition on spark plasma sintering of ZrB2–SiC–ZrC nanocomposite synthesized by MASPSyn", Ceramics International, Vol. 43, (2017), 111-115. dot: 10.1016/j.ceramint.2016.09.118
  34. Shahedi Asl, M., "Microstructure, hardness and fracture toughness of spark plasma sintered ZrB2–SiC–Cf composites", Ceramics International, Vol. 43, (2017), 15047-15052. doi: 10.1016/j.ceramint.2017.08.030
  35. Shahedi Asl, M., Pazhouhanfar, Y., Sabahi Namini, A., Shaddel , S., Fattahi, M. and Mohammadi, M., "Role of graphite nano-flakes on the characteristics of ZrB2-based composites reinforced with SiC whiskers", Diamond and Related Materials, Vol. 105, (2020), 107786. doi: 10.1016/j.diamond.2020.107786
  36. Yuan, Y., Liu, J. X. and Zhang, G. J., "Effect of HfC and SiC on microstructure and mechanical properties of HfB2-based ceramics", Ceramics International, Vol.42, (2016), 7861-7867. doi: 10.1016/j.ceramint.2016.01.067
  37. Hosseinia, Z., Mollazadeh Beidokhti, S., Vahdati Khakib, J. and Pourabdoli, M., "Preparation of porous alumina/nano-nickel composite by gel casting and carbothermic reduction", International Journal of Engineering, Transaction A: Basics, Vol. 35, No. 01, (2022), 220-227. doi: 10.5829/IJE.2022.35.01A.21
  38. Sabree, I. K., Aswad, M. A. and Abd Ali, H. S., "Effect of additional zirconia on fracture mechanics of bioactive glass-ceramics using digital image correlation", International Journal of Engineering,  Transactions C: Aspects, Vol. 34, No. 9, (2021), 2053-2059. doi: 10.5829/IJE.2021.34.09C.02
  39. Taghian Dehaghani, M. and Ahmadian, M., "Fracture mechanism of CoCrMo porous nano-composite prepared by powder metallurgy route", International Journal of Engineering, Transaction A: Basics, Vol. 31, No. 1, (2018), 19-24. doi: 10.5829/ije.2018.31.01a.03
  40. Ghadami, S., Taheri-nassaj, E., Baharvandi, H. R. and Ghadami, F., "Effect of in situ SiC and MoSi 2 phases on the oxidation behavior of HfB2 - based composites", Ceramics International Journal, Vol. 46, (2020), 20299-20305. doi: 10.1016/j.ceramint.2020.05.116
  41. Wang, P., Li, H., Sun, J., Yuan, R., Zhang, L., Zhang, Y. and Li, T., "The effect of HfB2 content on the oxidation and thermal shock resistance of SiC coating", Surface & Coatings Technology, Vol. 339, (2018), 124-131. doi: 10.1016/j.surfcoat.2018.02.029
  42. Jin, H., Meng, S., Zhang, X., Zeng, Q. and Niu, J., "Effects of oxidation temperature, time and ambient pressure on the oxidation of ZrB2 – SiC-graphite composites in atomic oxygen", Journal of the European Ceramic Society, Vol. 36, (2016), 1855-1861. doi: 10.1016/j.jeurceramsoc.2016.02.040
  43. Ren, X., Mo, H., Wang, W., Feng, P., Guo, L. and Li, Z., "Ultra high temperature ceramic HfB2-SiC coating by liquid phase sintering method to protect carbon materials from oxidation", Materials Chemistry and Physics, (2018), doi: 10.1016/j.matchemphys.2018.07.018