Development and Control of an upper Limb Rehabilitation Robot via Ant Colony Optimization -PID and Fuzzy-PID Controllers

Document Type : Research Note


1 Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran

2 Faculty of Engineering, Department of Electrical Engineering, Golestan University, Gorgan, Iran


The control of movement rehabilitation robots is necessary for the recovery of physically disabled patients and is an interesting open problem. This paper presents a mathematical model of the upper limb rehabilitation robot using Euler-Lagrange approach. Since the PID controller is one of the most popular feedback controllers in the control strategy due to its simplicity, we proposed an ACO-PID controller for an upper limb rehabilitation robot. The main part of designing the PID controller is determining the gains of the controller. For this purpose, we used Ant Colony Optimization Algorithm (ACO) to tune the coefficients. To evaluate the validity of the proposed controller, we have compared it to Fuzzy-PID controller and the PID controller adjusted with the Ziegler-Nichols method (ZN-PID). The results showed that the performance of the ACO-PID controller is better than the others. Also, the adaptive PID controllers (ACO-PID and Fuzzy-PID) ensure accurate tracking, finite-time convergence, and stability. The results showed that the mean absolute error and normalized root mean square (NRMS) of tracking error using the ACO-PID are less than that using the Fuzzy-PID and ZN-PID controller.


Main Subjects

  1. Zhang, K., "The design and realization of a gait rehabilitation training robot with body supporting mechanism", International Journal of Engineering, Transactions C: Aspects, Vol. 29, No. 9, (2016), 1314-1318, doi: 10.5829/idosi.ije.2016.29.09c.18.
  2. Zawawi, M.Z.F.B.M., Elamvazuthi, I., Aziz, A.B.A. and Daud, S.A., "Comparison of pid and fuzzy logic controller for dc servo motor in the development of lower extremity exoskeleton for rehabilitation", in 2017 IEEE 3rd International Symposium in Robotics and Manufacturing Automation (ROMA), IEEE. (2017), 1-6, doi: 10.1109/ROMA.2017.8231822.
  3. Piltan, F., Emamzadeh, S., Heidari, S., Zahmatkesh, S. and Heidari, K., "Design artificial intelligent parallel feedback linearization of pid control with application to continuum robot", International Journal of Engineering and Manufacturing, Vol. 3, No. 2, (2013), 51-72, doi: 10.5815/ijem.2013.02.04.
  4. Widhiada, W., Nindhia, T. and Budiarsa, N., "Robust control for the motion five fingered robot gripper", International Journal of Mechanical Engineering and Robotics Research, Vol. 4, No. 3, (2015), 226, doi: 10.18178/ijmerr.4.3.226-232.
  5. Ayas, M.S., Altas, I.H. and Sahin, E., "Fractional order based trajectory tracking control of an ankle rehabilitation robot", Transactions of the Institute of Measurement and Control, Vol. 40, No. 2, (2018), 550-564, doi: 10.1177/0142331216667810.
  6. Ayas, M.S. and Altas, I.H., "Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot", Control Engineering Practice, Vol. 59, (2017), 44-54, doi: 10.1016/j.conengprac.2016.11.015.
  7. Mohanta, J.K., Mohan, S., Deepasundar, P. and Kiruba-Shankar, R., "Development and control of a new sitting-type lower limb rehabilitation robot", Computers & Electrical Engineering, Vol. 67, (2018), 330-347, doi: 10.1016/j.compeleceng.2017.09.015.
  8. Cheng, L., Chen, M. and Li, Z., "Design and control of a wearable hand rehabilitation robot", IEEE Access, Vol. 6, (2018), 74039-74050, doi: 10.1109/ACCESS.2018.2884451.
  9. Aldair, A.A., Rashid, A.T., Rashid, M.T. and Alsaedee, E.B., "Adaptive fuzzy control applied to seven-link biped robot using ant colony optimization algorithm", Iranian Journal of Science and Technology, Transactions of Electrical Engineering, Vol. 43, No. 4, (2019), 797-811, doi: 10.1007/s40998-019-00201-x.
  10. Jiang, D., Shi, G., Pang, Z., Li, S. and Tian, Y., "Control of a new cycling rehabilitation robot based on fuzzy pid", in Journal of Physics: Conference Series, IOP Publishing. Vol. 1622, (2020), 012119, doi:10.1088/1742-6596/1622/1/012119.
  11. Awouda, A. and Mamat, R., "New pid tuning rule using itae criteria", International Journal of Engineering, Vol. 3, No. 6, (2008), 597-608, doi: 10.1109/ICCAE.2010.5451484.
  12. Kang, H.-B. and Wang, J.-H., "Adaptive robust control of 5 dof upper-limb exoskeleton robot", International Journal of Control, Automation and Systems, Vol. 13, No. 3, (2015), 733-741, doi: 10.1007/s12555-013-0389-x.
  13. Pastor, S., Rivera, C., Avilés, O. and Mauledoux, M., "A real-time motion tracking wireless system for upper limb exosuit based on inertial measurement units and flex sensors", International Journal of Engineering, Transactions C: Aspects, Vol. 32, No. 6, (2019), 820-827, doi: 10.5829/ije.2019.32.06c.04.
  14. Saadat, M. and Garmsiri, N., "A new intelligent approach to patient-cooperative control of rehabilitation robots", International Journal of Engineering, Transactions C: Aspects, Vol. 27, No. 3, (2014), 467-474, doi: 10.5829/idosi.ije.2014.27.03c.15.
  15. Shen, Z., Zhuang, Y., Zhou, J., Gao, J. and Song, R., "Design and test of admittance control with inner adaptive robust position control for a lower limb rehabilitation robot", International Journal of Control, Automation and Systems, Vol. 18, No. 1, (2020), 134-142, doi: 10.1007/s12555-018-0477-z.
  16. Wang, S., Yin, X., Li, P., Zhang, M. and Wang, X., "Trajectory tracking control for mobile robots using reinforcement learning and pid", Iranian Journal of Science and Technology, Transactions of Electrical Engineering, Vol. 44, No. 3, (2020), 1059-1068, doi: 10.1007/s40998-019-00286-4.
  17. Maurya, R.K. and Bhowmick, B., "Review of finfet devices and perspective on circuit design challenges", Silicon, (2021), 1-9, doi: 10.1007/s12633-021-01366-z.
  18. Qazani, M.R.C., Asadi, H., Khoo, S. and Nahavandi, S., "A linear time-varying model predictive control-based motion cueing algorithm for hexapod simulation-based motion platform", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 51, No. 10, (2019), 6096-6110, doi: 10.1109/TSMC.2019.2958062.
  19. Qazani, M.R.C., Asadi, H., Mohamed, S., Lim, C.P. and Nahavandi, S., "An optimal washout filter for motion platform using neural network and fuzzy logic", Engineering Applications of Artificial Intelligence, Vol. 108, No., (2022), doi: 104564, 10.1016/j.engappai.2021.104564.
  20. Shaik, S., "A coplanar wave guide fed compact antenna for navigational applications", National Journal Of Antennas and Propagation, Vol. 2, No. 1, (2020), 7-12, doi: 10.31838/NJAP/02.01.02.
  21. Srinivasareddy, D.S., Narayana, D.Y. And Krishna, D.D., "Sector beam synthesis in linear antenna arrays using social group optimization algorithm", National Journal of Antennas And Propagation, Vol. 3, No. 2, (2021), 6-9, doi: 10.31838/NJAP/03.02.02.
  22. Colorni, A., Dorigo, M. and Maniezzo, V., "An investigation of some properties of an" ant algorithm"", in Ppsn. Vol. 92, (1992), doi: 10.1109/3477.484436.
  23. De Oliveira, S.M., Bezerra, L.C., Stützle, T., Dorigo, M., Wanner, E.F. and de Souza, S.R., "A computational study on ant colony optimization for the traveling salesman problem with dynamic demands", Computers & Operations Research, (2021), 105359, doi: 10.1016/j.cor.2021.105359.
  24. Fidanova, S. and Fidanova, S., "Ant colony optimization", Ant Colony Optimization and Applications, (2021), 3-8, doi: 10.1007/978-3-030-67380-2_2.
  25. Rosales, Y., Lopez, R., Rosales, I., Salazar, S. and Lozano, R., "Design and modeling of an upper limb exoskeleton", in 2015 19th International Conference on System Theory, Control and Computing (ICSTCC), IEEE. (2015), 266-272, doi: 10.1109/ICSTCC.2015.7321304.
  26. Mirrashid, N., Alibeiki, E. and Rakhtala, S.M., "Nonlinear robust controller design for an upper limb rehabilitation robot via variable gain super twisting sliding mode", International Journal of Dynamics and Control, (2022), doi: 10.1007/s40435-021-00902-4.
  27. Hang, C.C., Åström, K.J. and Ho, W.K., "Refinements of the ziegler–nichols tuning formula", in IEE Proceedings D (Control Theory and Applications), IET. Vol. 138, (1991), 111-118, doi: 10.1049/ip-d.1991.0015.
  28. Mefoued, S., "A second order sliding mode control and a neural network to drive a knee joint actuated orthosis", Neurocomputing, Vol. 155, (2015), 71-79, doi: 10.1016/j.neucom.2014.12.047.