Numerical Investigation of Geometric Parameters Effects on Heat Transfer Enhancement in a Manifold Microchannel Heat Sink

Document Type : Original Article

Authors

Department of Mechanical Engineering, University of Kashan, Kashan, Iran

Abstract

Microchannel heat sink has been employed and as a part of electronic equipment extensively investigated. In this investigation, heat transfer and fluid flow features of laminar flow of water in a manifold microchannel heat sink (MMHS) was numerically simulated. Selected heat flux was 100 W/m^2 and water was as working fluid. The effect of length of inlet/outlet ratio (λ=Linlet/Loutlet), the height of microchannel (Hch), and width of the microchannel (Wch) at Reynolds number (Re) range from 20 to 100 as independent parameters on the fluid flow and heat transfer features were examined. Obtained results demonstrate that in MMHS, the impinging jet on the bottom channel surface, inhibits the growth of hydrodynamic and thermal boundary layers, resulting in an enhanced heat transfer rate. Also, by increasing Re and keeping the geometric parameters constant, the heat transfer rate increases. Based on the present investigation, for low Re, it is better to choose a λ=Linlet/Loutlet >1 and for high Re, choose a λ<1. For low Re, maximum of performance evaluation criterion (PECmax) is obtained at Hch=300µm, and for high Re, PECmax is obtained at Hch=240µm. for Re=20 to 100, the maximum of PECmax is 1.765 and obtained at Re=100 and Hch=240µm.

Keywords

Main Subjects


  1.  

    1. Bailina, F., Pei, Z., Ganghan, H., YanJun, W., "Research on Properties of Fluid Pressure Drop for Electric Vehicle IGPT Pin Fin Heat Sink", International Journal of Engineering, Transactions A: Basics, 28, No. 4, (2015), 627-633. DOI: 10.5829/idosi.ije.2015.28.04a.18.
    2. Sarabandi, A. H., Jabari Moghadam, A., "Slip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels", International Journal of Engineering, Transactions A: Basics, 30, No. 7, (2017), 1054-1065. DOI: 10.5829/ije.2017.30.07a.15.
    3. Safikhani, , Shaabani, H., "Numerical Simulation of Frost Formation in Interrupted Micro Channel Heat Sinks Considering Microfluidic Effects in Slip Regime", International Journal of Engineering, Transactions C: Aspetcs, Vol. 33, No. 12, (2020), 2556-2562. DOI: 10.5829/ije.2020.33.12c.17
    4. Tan, H., Wu L., Wang, M., Yang Z., Du, P., Heat transfer improvement in microchannel heat sink by topology design and optimization for high heat flux chip cooling, International Journal of Heat and Mass Transfer, Vol. 129, (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.092
    5. Adeyemi, T.S., Rufus, D.O., “Analytical Development of an Improved Inflow Performance Relationship (IPR) Model for Solution Gas Drive Reservoirs,” Journal of Human, Earth and Future, 2, No. 2, (2021). Doi: 10.28991/HEF-2021-02-02-04.
    6. Kapeller, H., Dvorak, D., Šimić, D., “Improvement and Investigation of the Requirements for Electric Vehicles by the use of HVAC Modeling, “, HighTech and Innovation Journal, Vol. 2, No. 1, (2021). Doi: 28991/HIJ-2021-02-01-07
    7. Kermani, E., "Manifold micro-channel cooling of photovoltaic cells for high efficiency solar energy conversion", M.S. Thesis, University of Maryland, (2008).
    8. Escher, W., Michel, B., Poulikakos, D., "A novel high performance ultra-thin heat sink for electronics, International Journal of Heat and Fluid Flow, Vol. 31, (2010), 586-598. https://doi.org/10.1016/j.ijheatfluidflow.2010.03.001.
    9. Cetegen, E., "Force Fed Microchannel High Heat Flux Cooling Utilizing Microgrooved Surface", Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, (2010).
    10. Kasten, P., Zimmermann, S., Tiwari, M.K., Michel, B., Poulikakos, D., "Hot water-cooled heat sinks for efficient data center cooling: towards electronic cooling with high exergetic utility", Frontiers in Heat and Mass Transfer, Vol. 1, (2010). http://dx.doi.org/10.5098/hmt.v1.2.3006.
    11. Boteler, L., Jankowski, N., McCluskey, P., Morgan, B., "Numerical investigation and sensitivity analysis of manifold microchannel coolers", International Journal of Heat and Mass Transfer, Vol. 55, (2012) 7698-7708. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.073.
    12. Husain, A., Kim, K.Y., "Design Optimization of Manifold Microchannel Heat Sink Through Evolutionary Algorithm Coupled with Surrogate Model", IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, (2013), 617-624. https://doi.org/ 10.1109/95.588554.
    13. Sarangi, S., Bodla, K.K., Garimella, S.V., Murthy, J.Y., "Manifold microchannel heat sink design using optimization under uncertainty", International Journal of Heat and Mass Transfer, Vol. 69, (2014), 92-105. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.067.
    14. Arie, M.A., Shooshtari, A.H., Dessiatoun, S.V., Ohadi, M.M., "Thermal optimization of an air-cooling heat exchanger utilizing manifold-microchannels", Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), (2014), 807-815. https://doi.org/ 10.1109/ITHERM.2014.6892364
    15. Arie, M.A., Shooshtari, A.H., Dessiatoun, S.V., Al-Hajri, E., Ohadi, M.M., "Numerical Modeling and Thermal Optimization of a Single-phase Flow Manifold-Microchannel Plate Heat Exchanger", International Journal of Heat and Mass Transfer, 81 (2015), 478-489. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.022.
    16. Yue, Y., Mohammadian, S.K., Zhang, Y., "Analysis of performances of a manifold microchannel heat sink with nanofluids", International Journal of Thermal Sciences. Vol. 89, (2015), 305-313. https://doi.org/10.1016/j.ijthermalsci.2014.11.016.
    17. Andhare, R.S., Shooshtari, A.H., Dessiatoun, S.V., Ohadi, M.M., "Heat Transfer and Pressure Drop Characteristics of a Flat Plate Manifold Microchannel Heat Exchanger in Counter Flow Configuration", Applied Thermal Engineering. Vol. 96, (2016), 178-189. https://doi.org/10.1016/j.applthermaleng.2015.10.133.
    18. Li, S.N., Zhang, H.N., Li, X.B., Li, Q., Li, F.C., Sang, S. Q., Joo, W., "Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink", Applied Thermal Engineering, Vol. 115, (2017), 1213-1225. https://doi.org/10.1016/j.applthermaleng.2016.10.047.
    19. Arie, M.A., Shooshtari, A.H., Rao, V.V., Dessiatoun, S.V., Ohadi, M.M., "Air-Side Heat Transfer Enhancement Utilizing Design Optimization and an Additiv Manufacturing Technique", ASME, Journal of Heat Transfer, Vol. 139, (2017). https://doi.org/10.1115/1.4035068.
    20. Drummond, K.P., Back, D., Sinanis, M.D., Janes, D.B., Peroulis, D., Weibel, J.A., Garimella, S.V., "A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics", International Journal of Heat and Mass Transfer, Vol. 117, (2018), 319-330. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.015.
    21. Ju, X., Xu, C., Zhou, Y., Liao, Z., Yang, Y., "Numerical investigation of a novel manifold micro-pin-fin heat sink combining chessboard nozzle-jet concept for ultra-high heat flux removal", International Journal of Heat and Mass Transfer, Vol. 126, (2018), 1206-1218. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.059.
    22. Zhang, H., Li, S., Cheng, J., Zheng, Z., Li, X., Li, F., "Numerical study on the pulsating effect on heat transfer performance of pseudoplastic fluid flow in a manifold microchannel heat sink", Applied Thermal Engineering. Vol. 129, (2018), 1092-1105. https://doi.org/10.1016/j.applthermaleng.2017.10.124.
    23. Jung, K.W., Kharangate, C.R., Lee, H., Palko, J., Zhou, F., Asheghi M., Dede, E.M., Goodson, K.E., "Embedded cooling with 3D manifold for vehicle power electronics application: Single-phase thermal-fluid performance", International Journal of Heat and Mass Transfer, Vol. 130 (2019), 1108-1119. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.108.
    24. Tiwari, R., Andhare, R.S., Shooshtari, A., Ohadi, M.M., "Development of an Additive Manufacturing-Enabled Compact Manifold Microchannel Heat Exchanger", Applied Thermal Engineering. Vol. 147, (2019), 781-788. https://doi.org/10.1016/j.applthermaleng.2018.10.122.
    25. Luo, , Li, J., Zhou, K., Zhang, J., Lia, W. , "A numerical study of subcooled flow boiling in a manifold microchannel heat sink with varying inlet-to-outlet width ratio", International Journal of Heat and Mass Transfer, Vol. 139, (2019), 554-563. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.030.
    26. Yang, M., Cao, B.Y., "Numerical study on flow and heat transfer of a hybrid microchannel cooling scheme using manifold arrangement and secondary channels", Applied Thermal Engineering. Vol. 159, (2019). https://doi.org/10.1016/j.applthermaleng.2019.113896.
    27. Drummond, K.P., Weibel, J.A., Garimella, S.V., "Two-phase flow morphology and local wall temperatures in high-aspect-ratio manifold microchannels", International Journal of Heat and Mass Transfer, Vol. 153, (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119551.
    28. Luo, Y., Zhang, J., Li, W., "A comparative numerical study on two-phase boiling fluid flow and heat transfer in the microchannel heat sink with different manifold arrangements", International Journal of Heat and Mass Transfer, Vol. 156, (2020). https://doi.org/ 10.1016/j.ijheatmasstransfer.2020.119864.
    29. Yang, M., Li, M.T., Hua, Y.C., Wang, W., Cao, B.Y., "Experimental study on single-phase hybrid microchannel cooling using HFE-7100 for liquid-cooled chips", International Journal of Heat and Mass Transfer, Vol. 160, (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120230.
    30. Luo, Y., Li, W., Zhang, J., Minkowycz, W.J., "Analysis of thermal performance and pressure loss of subcooled flow boiling in manifold microchannel heat sink", International Journal of Heat and Mass Transfer, Vol. 162, (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120362.
    31. Bergman, T., Avine, A.S., Incropera, F.P., Dewitt, D.P., Fundamentals of Heat and Mass Transfer, Seventh ed., John Wiley & Sons, Hoboken, 2011.
    32. Glassbrenner, C.J., Slack, G.A., "Thermal Conductivity of Silicon and Germanium from 3K to the Melting Point", Physical Review. Vol. 134, (1964), 1058-1069. https://doi.org/10.1103/PhysRev.134.A1058.
    33. Ghorbani, M., Salimpour, M.R., Vafai, K., "Microchannel thermal performance optimization utilizing porous layer configurations", International Journal of Heat and Mass Transfer, Vol. 133, (2019), 62-72. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.063.