A Novel Lightweight Phase-changing Cooling Roof Tile

Document Type : Original Article


1 Karunya Institute of Technology and Sciences, India

2 Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran


Roof tiles are the most common roof coverings in Indian buildings, especially in traditional residential buildings. Given the important role of roofing characteristics in building energy efficiency and indoor thermal comfort conditions, innovative solutions to improve the thermal energy performance of this diffused roofing element have become a key research issue. In this perspective, cool roofing applications represent an effective solution to this objective. The present work deals with the analysis of innovative cooling roof tile manufactured using a combination of Metakaolin with different percentages, EPS, sodium silicate and coating material. The experimental work was carried out during day and night. The thermal performance of cool roof tiles were assessed in terms of the open-air temperature compared to the thermal performance of ordinary roofing tile. The report discovered that using revolutionary cool roofs greatly increased thermal comfort during the daytime, and preserved thermal comfort during the night. The innovative cool roof tile is cheaper, easier to implement, and less expensive compared to other roofing technologies. The study revealed that the roof's exterior and interior surface temperature reduced about 8°C and 12°C, respectively during day time, while roof's exterior and interior surface temperature maintain atmospheric temperature during night time. The compressive and transverse breaking strength was increasing about 9.1% and 39.6%.


1.     Kolokotroni, M., Shittu, E., Santos, T., Ramowski, L., Mollard, A., Rowe, K., Wilson, E., de Brito Filho, J.P. and Novieto, D., "Cool roofs: High tech low cost solution for energy efficiency and thermal comfort in low rise low income houses in high solar radiation countries", Energy and Buildings,  Vol. 176, (2018), 58-70. doi: 10.1016/j.enbuild.2018.07.005.
2.     Pisello, A.L., "State of the art on the development of cool coatings for buildings and cities", Solar Energy,  Vol. 144, (2017), 660-680. doi: 10.1016/j.solener.2017.01.068.
3.     Akbari, H. and Kolokotsa, D., "Three decades of urban heat islands and mitigation technologies research", Energy and Buildings,  Vol. 133, (2016), 834-842. doi: 10.1016/j.enbuild.2016.09.067.
4.     Santamouris, M., Synnefa, A. and Karlessi, T., "Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions", Solar Energy,  Vol. 85, No. 12, (2011), 3085-3102. doi: 10.1016/j.solener.2010.12.023.
5.     Pisello, A.L., Cotana, F. and Brinchi, L., "On a cool coating for roof clay tiles: Development of the prototype and thermal-energy assessment", Energy procedia,  Vol. 45, (2014), 453-462. doi: 10.1016/j.egypro.2014.01.049.
6.     Bellia, L., De Falco, F. and Minichiello, F., "Effects of solar shading devices on energy requirements of standalone office buildings for italian climates", Applied Thermal Engineering,  Vol. 54, No. 1, (2013), 190-201. doi: 10.1016/j.applthermaleng.2013.01.039.
7.     Synnefa, A., Saliari, M. and Santamouris, M., "Experimental and numerical assessment of the impact of increased roof reflectance on a school building in athens", Energy and Buildings,  Vol. 55, (2012), 7-15. doi: 10.1016/j.enbuild.2012.01.044.
8.     Androutsopoulos, A., Stavrakakis, G. and Damasiotis, M., "Cool roof impacts on a school-building thermal and energy performance in athens, greece", Procedia Environmental Sciences,  Vol. 38, (2017), 178-186. doi: 10.1016/j.proenv.2017.03.103.
9.     Kolokotsa, D., Maravelaki-Kalaitzaki, P., Papantoniou, S., Vangeloglou, E., Saliari, M., Karlessi, T. and Santamouris, M., "Development and analysis of mineral based coatings for buildings and urban structures", Solar Energy,  Vol. 86, No. 5, (2012), 1648-1659. doi: 10.1016/j.solener.2012.02.032.
10.   Bhatia, A., Mathur, J. and Garg, V., "Calibrated simulation for estimating energy savings by the use of cool roof in five indian climatic zones", Journal of Renewable and Sustainable Energy,  Vol. 3, No. 2, (2011), 023108. doi: 10.1063/1.3582768.
11.   Jones, J., Roofing materials for thermal performance and environmental integration of buildings, in Materials for energy efficiency and thermal comfort in buildings. 2010, Elsevier.455-483. doi:10.1533/9781845699277.2.455
12.   Pisello, A.L., Rossi, F. and Cotana, F., "Summer and winter effect of innovative cool roof tiles on the dynamic thermal behavior of buildings", Energies,  Vol. 7, No. 4, (2014), 2343-2361. doi: 10.3390/en7042343.
13.   Akbari, H., "Measured energy savings from the application of reflective roofs in two small non-residential buildings", Energy,  Vol. 28, No. 9, (2003), 953-967. doi: 10.1016/s0360-5442(03)00032-x.
14.   Faraj, K., Khaled, M., Faraj, J., Hachem, F. and Castelain, C., "A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications", Journal of Energy Storage,  Vol. 33, (2020), 101913. doi: 10.1016/j.est.2020.101913.
15.   Wang, X., Zhang, Y., Xiao, W., Zeng, R., Zhang, Q. and Di, H., "Review on thermal performance of phase change energy storage building envelope", Chinese Science Bulletin,  Vol. 54, No. 6, (2009), 920-928. doi: 10.1007/s11434-009-0120-8.
16.   Khudhair, A.M. and Farid, M.M., "A review on energy conservation in building applications with thermal storage by latent heat using phase change materials", Energy Conversion and Management,  Vol. 45, No. 2, (2004), 263-275. doi: 10.1016/s0196-8904(03)00131-6.
17.   Pérez-Lombard, L., Ortiz, J. and Pout, C., "A review on buildings energy consumption information", Energy and Buildings,  Vol. 40, No. 3, (2008), 394-398. doi: 10.1016/j.enbuild.2007.03.007.
18.   Ismail, K. and Castro, J., "Pcm thermal insulation in buildings", International Journal of Energy Research,  Vol. 21, No. 14, (1997), 1281-1296.
19.   Parameshwaran, R., Kalaiselvam, S., Harikrishnan, S. and Elayaperumal, A., "Sustainable thermal energy storage technologies for buildings: A review", Renewable and Sustainable Energy Reviews,  Vol. 16, No. 5, (2012), 2394-2433. doi: 10.1016/j.rser.2012.01.058.
20.   Kuznik, F., Virgone, J. and Noel, J., "Optimization of a phase change material wallboard for building use", Applied Thermal Engineering,  Vol. 28, No. 11-12, (2008), 1291-1298. doi: 10.1016/j.applthermaleng.2007.10.012.
21.   Arunraj, E., Chacko, J., Mannaickal, A., Shaji, R. and Kumar, A.J., "A review on cooling roof tile materials", Journal of Critical Reviews,  Vol. 7, No. 13, (2020), 55-58. doi: 10.31838/jcr.07.13.08.
22.   Sayadi, A.A., Tapia, J.V., Neitzert, T.R. and Clifton, G.C., "Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete", Construction and Building Materials,  Vol. 112, (2016), 716-724. doi: 10.1016/j.conbuildmat.2016.02.218.
23.   Pasupathy, A., Velraj, R. and Seeniraj, R., "Phase change material-based building architecture for thermal management in residential and commercial establishments", Renewable and Sustainable Energy Reviews,  Vol. 12, No. 1, (2008), 39-64. doi: 10.1016/j.rser.2006.05.010.
24.   Siddique, R. and Klaus, J., "Influence of metakaolin on the properties of mortar and concrete: A review", Applied Clay Science,  Vol. 43, No. 3-4, (2009), 392-400. doi: 10.1016/j.clay.2008.11.007.
25.   Al-dujaili, A., Disher Al-hydary, I. and Zayer Hassan, Z., "Optimizing the properties of metakaolin-based (na, k)-geopolymer using taguchi design method", International Journal of Engineering,  Vol. 33, No. 4, (2020), 631-638. doi" 10.5829/ije.2020.33.04a.14.
26.   Jadidi, A. and Jadidi, M., "An algorithm based on predicting the interface in phase change materials", International Journal of Engineering,  Vol. 31, No. 5, (2018), 799-804. doi: 10.5829/ije.2018.31.05b.15.
27.   Rao, D.V.P. and Mallikarjuna, C.S., "An experimental investigation on properties of concrete by partial replacement of cement with ggbs and fine aggregate with quarry dust", International Journal of Science and Research,  Vol. 6, No. 12 (2017), 706-710. doi:  10.21275/art20178797.
28.   Ahmari, S. and Zhang, L., The properties and durability of alkali-activated masonry units, in Handbook of alkali-activated cements, mortars and concretes. 2015, Elsevier.643-660. doi:10.1533/9781782422884.4.643
29.   Yajnik, S. and Roux, J., Spectral radiative properties and apparent thermal conductivity of expanded polystyrene foam insulation, in Insulation materials, testing and applications. 1990, ASTM International. doi:10.1520/stp23330s
30.   383, I., "Specification for coarse and fine aggregates from natural sources for concrete", Bureau of Indian Standards,  (1970).
31.   Specification, P.-P.C., "Is 1489 (part 1)-1991", Bureau of Indian Standards, New Delhi.
32.   Astm c270-14a - standard specification for mortar unit for masonry.
33.   Is 13801: Checkered cement concrete tiles", in, Bureau of Indian Standards, New Delhi.
34.   Astm 1167-11 (2017) - standard specification for clay roof tiles.