Synthesis and Characterization of Photocatalytic Activity of Hematite/ Cobalt Oxide/ Graphite Nanocomposites

Document Type : Original Article

Authors

Ceramic Department, Materials and Energy Research Center, Tehran, Iran

Abstract

In this study, at first step nanopowder particles of  α-Fe2O3 (Hematite) and  Co3O4 were synthesized separately thorough simple chemical method from an aqueous solution of iron (III) nitrate nonahydrate (Fe(NO3)3.9H2O) and cobalt (II) nitrate hexahydrate (Co(NO3)2.6H2O) as  precursors.  After that, three composites from synthesized nanopowders of Fe2O3 with 8, 16 and 24 wt.% of Co3O4 were prepared. Graphite nanopowder was added to one composition of samples in weight percentages of 1.17 and 2.35. The composition and morphology of the composites were investigated by XRD and FE-SEM, respectively. FE-SEM analysis showed that the morphology of the powders and composites were all spherical in nanoscale. The photocatalytic activity of the composites was examined by measuring the photo-degradation of the aqueous solution of methylene blue under simulated solar light. To determine the photo catalytic activity, the degradation of methylene blue (MB) in the absence of light (dark test) was taken as well. Results showed that addition of Co3O4 to Fe2O3 decrease the activity of photo-catalytic process while nano-graphite enhanced photo-catalytic process by upward of ~2 % with respect to the composite without graphite nanoparticles. Stoichiometric calculations showed that the amount of hydrogen produced by water by the composite of Fe2O3-16% Co3O4- 2.35% Graphite nanoparticles was 27 μmol H2/h.g under solar light irradiation.

Keywords


1.     Lee, J.S., "Photocatalytic water splitting under visible light with particulate semiconductor catalysts", Catalysis Surveys from Asia,  Vol. 9, (2005), 217-227. DOI: 10.1007/s10563-005-9157-0.
2.     Maeda, K. and Domen, K., "New non-oxide photocatalysts designed for overall water splitting under visible light", The Journal of Physical Chemistry C,  Vol. 111, No. 22, (2007), 7851-7861. DOI: 10.1021/jp070911w.
3.     Osterloh, F.E., "Inorganic materials as catalysts for photochemical splitting of water", Chemistry of Materials,  Vol. 20, No. 1, (2008), 35-54. DOI: 10.1021/cm7024203.
4.     Mangold, K.-M., "Introduction to hydrogen technology.By roman j. Press, k. S. V. Santhanam, massoud j. Miri, alla v. Bailey, and gerald a. Takacs", ChemSusChem,  Vol. 2, No. 8, (2009), 781-781. DOI: 10.1002/cssc.200900109.
5.     Dutta, S., "A review on production, storage of hydrogen and its utilization as an energy resource", Journal of Industrial and Engineering Chemistry,  Vol. 20, (2014), 1148–1156. DOI: 10.1016/j.jiec.2013.07.037.
6.     Maeda, K., Xiong, A., Yoshinaga, T., Ikeda, T., Sakamoto, N., Hisatomi, T., Takashima, M., Lu, D., Kanehara, M., Setoyama, T., Teranishi, T. and Domen, K., "Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light", Angewandte Chemie International Edition,  Vol. 49, No. 24, (2010), 4096-4099. DOI: 10.1002/anie.201001259.
7.     Liu, S., Kokot, S. and Will, G., "Photochemistry and chemometrics—an overview", Journal of Photochemistry and Photobiology C: Photochemistry Reviews,  Vol. 10, No. 4, (2009), 159-172. https://doi.org/10.1016/j.jphotochemrev.2010.01.001.
8.     Chen, Y.H. and Lin, C.C., "Effect of nano-hematite morphology on photocatalytic activity", Physics and Chemistry of Minerals,  Vol. 41, No. 10, (2014), 727-736. 10.1007/s00269-014-0686-9.
9.     Wender, H., Gonçalves, R.V., Dias, C.S.B., Zapata, M.J.M., Zagonel, L.F., Mendonça, E.C., Teixeira, S.R. and Garcia, F., "Photocatalytic hydrogen production of CO(OH)2 nanoparticle-coated α-Fe2O3 nanorings", Nanoscale,  Vol. 5, No. 19, (2013), 9310-9316. DOI: 10.1039/C3NR02195E.
10.   Liu, C.a., Fu, Y., Xia, Y., Zhu, C., Hu, L., Zhang, K., Wu, H., Huang, H., Liu, Y., Xie, T., Zhong, J. and Kang, Z., "Cascaded photo-potential in a carbon dot-hematite system driving overall water splitting under visible light", Nanoscale,  Vol. 10, No. 5, (2018), 2454-2460. DOI: 10.1039/C7NR08000J.
11.   Zhu, Y., Wan, T., Wen, X., Chu, D. and Jiang, Y., "Tunable type i and ii heterojunction of coox nanoparticles confined in g-c3n4 nanotubes for photocatalytic hydrogen production", Applied Catalysis B: Environmental,  Vol. 244, (2019), 814-822. https://doi.org/10.1016/j.apcatb.2018.12.015.
12.   Nahar, S., Zain, M., Kadhum, A., Abu Hasan, H. and Hasan, M.R., "Advances in photocatalytic CO2 reduction with water: A review", Materials,  Vol. 10, (2017), 629. DOI: 10.3390/ma10060629.
13.   Miao, R., Luo, Z., Zhong, W., Chen, S.-Y., Jiang, T., Dutta, B., Nasr, Y., Zhang, Y. and Suib, S., "Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst", Applied Catalysis B: Environmental,  Vol. 189, (2016), 26-38. DOI: 10.1016/j.apcatb.2016.01.070.
14.   Moro, F., Yu Tang, S.V., Tuna, F. and Lester, E., "Magnetic properties of cobalt oxide nanoparticles synthesised by a continuous hydrothermal method", Journal of Magnetism and Magnetic Materials,  Vol. 348, (2013), 1-7. https://doi.org/10.1016/j.jmmm.2013.07.064.
15.   Mohamed, R.M., McKinney, D.L. and Sigmund, W.M., "Enhanced nanocatalysts", Materials Science and Engineering: R: Reports,  Vol. 73, No. 1, (2012), 1-13. https://doi.org/10.1016/j.mser.2011.09.001.
16.   Mangrulkar, P.A., Joshi, M.M., Tijare, S.N., Polshettiwar, V., Labhsetwar, N.K. and Rayalu, S.S., "Nano cobalt oxides for photocatalytic hydrogen production", International Journal of Hydrogen Energy,  Vol. 37, No. 13, (2012), 10462-10466. https://doi.org/10.1016/j.ijhydene.2012.01.112.
17.   Moniz, S.J.A., Shevlin, S.A., Martin, D.J., Guo, Z.-X. and Tang, J., "Visible-light driven heterojunction photocatalysts for water splitting – a critical review", Energy & Environmental Science,  Vol. 8, No. 3, (2015), 731-759. DOI: 10.1039/C4EE03271C.
18.   Farahmandjou, M. and soflaee, f., "Low temperature synthesis of α- Fe2O3 nano-rods using simple chemical route", Journal of Nanostructures,  Vol. 2, (2015), 413. DOI: 10.7508/jns.2014.04.002.
19.   Manteghi, F., Kazemi, S.H., Peyvandipour, M. and Asghari, A., "Preparation and application of cobalt oxide nanostructures as electrode materials for electrochemical supercapacitors", RSC Advances,  Vol. 5, No. 93, (2015), 76458-76463. DOI: 10.1039/C5RA09060A.
20.   Liu, L., Zhang, B., Zhang, Y., He, Y., Huang, L., Tan, S. and Cai, X., "Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide", Journal of Chemical & Engineering Data,  Vol. 60, No. 5, (2015), 1270-1278. DOI: 10.1021/je5009312.
21.   Mustafa, S., Tasleem, S. and Naeem, A., "Surface charge properties of Fe2O3 in aqueous and alcoholic mixed solvents", Journal of Colloid and Interface Science,  Vol. 275, No. 2, (2004), 523-529. https://doi.org/10.1016/j.jcis.2004.02.089.
22.   Creazzo, F., Galimberti, D.R., Pezzotti, S. and Gaigeot, M.-P., "Dft-md of the (110)-CO3O4 cobalt oxide semiconductor in contact with liquid water, preliminary chemical and physical insights into the electrochemical environment", The Journal of Chemical Physics,  Vol. 150, No. 4, (2019), 041721. DOI: 10.1063/1.5053729.
23.   Lubis, S., Sheilatina and Murisna, "Synthesis, characterization and photocatalytic activity of α- Fe2O3/bentonite composite prepared by mechanical milling", Journal of Physics: Conference Series,  Vol. 1116, (2018), 042016. DOI: 10.1088/1742-6596/1116/4/042016.