Improving Thermal and Mechanical Property of Lightweight Concrete Using N-Butyl Stearate/Expanded Clay Aggregate with Alccofine1203

Document Type : Original Article


Department of Civil Engineering, Pondicherry Engineering College, Pondicherry, India


Phase change material (PCM) as n-butyl stearate (n-BS) was immersed in expanded clay aggregate (ECA) by two methods, direct immersion at room temperature and immersion at elevated temperature (30oC, 40oC and 50oC). ECA after 90min of immersion with n-BS at 40oC came to standby in its weight proportion (increased by 24%). After immersion, these aggregates (40oC) were mixed in cement slurry for preventing leakage and homogenous mixture with concrete. Oozing circle a leakage test was conducted on all the ECA with and without cement slury coating (room and elevated temperatures). ECA with cement slurry coating gave a reduction in leakage of ECA-PCM by 45%. Alccofine1203 was partially replaced (10% and 20%) by cement to improve mechanical properties in lightweight aggregate concrete. Compressive, flexural, thermal conductivity, DSC analysis and leakage test on aggregate and concrete specimens were conducted on all the mixes. Compressive strength for 10% replacement gave 31.7 kN/m2 and 32.8 kN/m2 for 7th day and 28th day, respectively. Similarly, flexural strength gave 6.12 kN/m2 for 28 days. DSC analysis of pure PCM (n-BS) gave 30.42oC and 23.25 oC for its melting and freezing temperature with 134.2 J/g and 129.3J/g as enthalpy for its melting and freezing points, respectively. Thermal conductivity for mix-3 (10%PCM-ECA +10% alccofine1203) gave the lowest value of all the mixes i.e, 13% less than the reference mix. There was no leakage or any stain marks were observed on the filter paper till 10% incorporation.


1.     Association, I.E., "India energy outlook: World energy outlook special report",  (2015),
2.     Pérez-Lombard, L., Ortiz, J. and Pout, C., "A review on buildings energy consumption information", Energy and Buildings,  Vol. 40, No. 3, (2008), 394-398. Doi.10.1016/j.enbuild.2007.03.007
3.     Soares, N., Costa, J.J., Gaspar, A.R. and Santos, P., "Review of passive pcm latent heat thermal energy storage systems towards buildings’ energy efficiency", Energy and Buildings,  Vol. 59, (2013), 82-103.
4.     Baetens, R., Jelle, B.P. and Gustavsen, A., "Phase change materials for building applications: A state-of-the-art review", Energy and Buildings,  Vol. 42, No. 9, (2010), 1361-1368. Doi:
5.     Sakulich, A.R. and Bentz, D.P., "Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles", Journal of Materials in Civil Engineering,  Vol. 24, No. 8, (2012), 1034-1042. Doi.10.1061/(ASCE)MT.1943-5533.0000381
6.     Hawes, D., Banu, D. and Feldman, D., "The stability of phase change materials in concrete", Solar Energy Materials and Solar Cells,  Vol. 27, No. 2, (1992), 103-118. Https://
7.     Bentz, D.P. and Turpin, R., "Potential applications of phase change materials in concrete technology", Cement and Concrete Composites,  Vol. 29, No. 7, (2007), 527-532. Doi. 10.1016/j.cemconcomp.2007.04.007
8.     Ling, T.-C. and Poon, C.-S., "Use of phase change materials for thermal energy storage in concrete: An overview", Construction and Building Materials,  Vol. 46, (2013), 55-62. DOI: 10.1016/j.conbuildmat.2013.04.031
9.     Cedeño, F.O., Prieto, M.a.M., Espina, A. and Garcı́a, J.R., "Measurements of temperature and melting heat of some pure fatty acids and their binary and ternary mixtures by differential scanning calorimetry", Thermochimica Acta,  Vol. 369, No. 1-2, (2001), 39-50.
10.   Inoue, T., Hisatsugu, Y., Ishikawa, R. and Suzuki, M., "Solid–liquid phase behavior of binary fatty acid mixtures: 2. Mixtures of oleic acid with lauric acid, myristic acid, and palmitic acid", Chemistry and Physics of Lipids,  Vol. 127, No. 2, (2004), 161-173. DOI: 10.1016/j.chemphyslip.2003.10.013
11.   Rozanna, D., Chuah, T., Salmiah, A., Choong, T.S. and Sa'ari, M., "Fatty acids as phase change materials (PCMS) for thermal energy storage: A review", International Journal of Green Energy,  Vol. 1, No. 4, (2005), 495-513.
12.   Ramakrishnan, S., Wang, X., Sanjayan, J. and Wilson, J., "Thermal energy storage enhancement of lightweight cement mortars with the application of phase change materials", Procedia Engineering,  Vol. 180, (2017), 1170-1177.
13.   Li, M., Wu, Z. and Tan, J., "Heat storage properties of the cement mortar incorporated with composite phase change material", Applied Energy,  Vol. 103, (2013), 393-399. Doi. 10.1016/j.apenergy.2012.09.057
14.   Yu, Y., Liu, J., Xing, S., Zuo, J. and He, X., "Experimental research of cement mortar with incorporated lauric acid/expanded perlite phase-change materials", Journal of Testing and Evaluation,  Vol. 45, No. 4, (2017), 1338-1343. DOI: 10.1520/JTE20160021.ISSN 0090-3973
15.   Xu, B., Ma, H., Lu, Z. and Li, Z., "Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites", Applied Energy,  Vol. 160, (2015), 358-367. Doi. 10.1016/j.apenergy.2015.09.069
16.   Nepomuceno, M.C. and Silva, P.D., "Experimental evaluation of cement mortars with phase change material incorporated via lightweight expanded clay aggregate", Construction and Building Materials,  Vol. 63, (2014), 89-96. Doi.10.1016/j.conbuildmat.2014.04.027
17.   Ma, B., Adhikari, S., Chang, Y., Ren, J., Liu, J. and You, Z., "Preparation of composite shape-stabilized phase change materials for highway pavements", Construction and Building Materials,  Vol. 42, (2013), 114-121. Doi. 10.1016/j.conbuildmat.2012.12.027
18.   Sarı, A., "Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: Preparation and thermal properties", Energy Conversion and Management,  Vol. 45, No. 13-14, (2004), 2033-2042. Doi.10.1016/j.enconman.2003.10.022
19.   Xiao, M., Feng, B. and Gong, K., "Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity", Energy Conversion and Management,  Vol. 43, No. 1, (2002), 103-108. Doi.10.1016/S0196-8904(01)00010-3
20.   Inaba, H. and Tu, P., "Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material", Heat and Mass Transfer,  Vol. 32, No. 4, (1997), 307-312. Doi.10.1007/s002310050126
21.   Shukla, N., Fallahi, A. and Kosny, J., "Performance characterization of pcm impregnated gypsum board for building applications", Energy Procedia,  Vol. 30, (2012), 370-379. Doi.10.1016/j.egypro.2012.11.044
22.   Voelker, C., Kornadt, O. and Ostry, M., "Temperature reduction due to the application of phase change materials", Energy and Buildings,  Vol. 40, No. 5, (2008), 937-944. Doi.10.1016/j.enbuild.2007.07.008
23.   Dong, Z., Cui, H., Tang, W., Chen, D. and Wen, H., "Development of hollow steel ball macro-encapsulated pcm for thermal energy storage concrete", Materials,  Vol. 9, No. 1, (2016), 59. DOI: 10.3390/ma9010059
24.   Drissi, S., Eddhahak, A., Caré, S. and Neji, J., "Thermal analysis by dsc of phase change materials, study of the damage effect", Journal of Building Engineering,  Vol. 1, (2015), 13-19. Doi. 10.1016/j.jobe.2015.01.001.hal-01174646
25.   Cellat, K., Beyhan, B., Kazanci, B., Konuklu, Y. and Paksoy, H., "Direct incorporation of butyl stearate as phase change material into concrete for energy saving in buildings", Journal of Clean Energy Technol,  Vol. 5, No. 1, (2017), 64-68. Doi: 10.18178/jocet.2017.5.1.345
26.   Wang, R., Ren, M., Gao, X. and Qin, L., "Preparation and properties of fatty acids based thermal energy storage aggregate concrete", Construction and Building Materials,  Vol. 165, (2018), 1-10. DOI: 10.1016/j.conbuildmat.2018.01.034
27.   Memon, S.A., Cui, H., Zhang, H. and Xing, F., "Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete", Applied Energy,  Vol. 139, (2015), 43-55. DOI: 10.1016/j.apenergy.2014.11.022
28.   Rao, V.V., Parameshwaran, R. and Ram, V.V., "Pcm-mortar based construction materials for energy efficient buildings: A review on research trends", Energy and Buildings,  Vol. 158, No., (2018), 95-122.
29.   Navarro, L., De Gracia, A., Colclough, S., Browne, M., McCormack, S.J., Griffiths, P. and Cabeza, L.F., "Thermal energy storage in building integrated thermal systems: A review. Part 1. Active storage systems", Renewable Energy,  Vol. 88, No., (2016), 526-547. DOI: 10.1016/j.renene.2015.11.040
30.   Wang, X., Yu, H., Li, L. and Zhao, M., "Research on temperature dependent effective thermal conductivity of composite-phase change materials (PCMS) wall based on steady-state method in a thermal chamber", Energy and buildings,  Vol. 126, No., (2016), 408-414. DOI:10.1016/J.ENBUILD.2016.05.058
31.   Pasupathy, A., Velraj, R. and Seeniraj, R., "Phase change material-based building architecture for thermal management in residential and commercial establishments", Renewable and Sustainable Energy Reviews,  Vol. 12, No. 1, (2008), 39-64.
32.   Sagar, B. and Sivakumar, M., "An experimental and analytical study on alccofine based high strength concrete", International Journal of Engineering,  Vol. 33, No. 4, (2020), 530-538. DOI: 10.5829/IJE.2020.33.04A.03
33.   Narasimha Reddy, P. and Ahmed Naqash, J., "Experimental study on tga, xrd and sem analysis of concrete with ultra-fine slag", International Journal of Engineering,  Vol. 32, No. 5, (2019), 679-684. DOI: 10.5829/ije.2019.32.05b.09
34.   Narasimha Reddy, P. and Ahmed Naqash, J., "Effect of alccofine on mechanical and durability index properties of green concrete", International Journal of Engineering,  Vol. 32, No. 6, (2019), 813-819. DOI: 10.5829/ije.2019.32.06c.03
35.   Schossig, P., Henning, H.-M., Gschwander, S. and Haussmann, T., "Micro-encapsulated phase-change materials integrated into construction materials", Solar Energy Materials and Solar Cells,  Vol. 89, No. 2-3, (2005), 297-306. DOI: 10.1016/j.solmat.2005.01.017
36.   Niall, D., Kinnane, O., West, R.P. and McCormack, S., "Mechanical and thermal evaluation of different types of pcm–concrete composite panels", Journal of Structural Integrity and Maintenance,  Vol. 2, No. 2, (2017), 100-108.
37.   Ma, Q. and Bai, M., "Mechanical behavior, energy-storing properties and thermal reliability of phase-changing energy-storing concrete", Construction and Building Materials,  Vol. 176, (2018), 43-49. DOI: 10.1016/j.conbuildmat.2018.04.226
38.   Min, H.-W., Kim, S. and Kim, H.S., "Investigation on thermal and mechanical characteristics of concrete mixed with shape stabilized phase change material for mix design", Construction and Building Materials,  Vol. 149, (2017), 749-762. DOI: 10.1016/j.conbuildmat.2017.05.176
39.   Kastiukas, G., Zhou, X. and Castro-Gomes, J., "Development and optimisation of phase change material-impregnated lightweight aggregates for geopolymer composites made from aluminosilicate rich mud and milled glass powder", Construction and Building Materials,  Vol. 110, (2016), 201-210.
40.   Dehdezi, P.K., Hall, M.R., Dawson, A.R. and Casey, S.P., "Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials", International Journal of Pavement Engineering,  Vol. 14, No. 5, (2013), 449-462.
41.   Lecompte, T., Le Bideau, P., Glouannec, P., Nortershauser, D. and Le Masson, S., "Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material", Energy and Buildings,  Vol. 94, (2015), 52-60.
42.   Jayalath, A., San Nicolas, R., Sofi, M., Shanks, R., Ngo, T., Aye, L. and Mendis, P., "Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials", Construction and Building Materials,  Vol. 120, (2016), 408-417. DOI: 10.1016/j.conbuildmat.2016.05.116
43.   Meshgin, P. and Xi, Y., "Effect of phase-change materials on properties of concrete", ACI Materials Journal,  Vol. 109, No. 1, (2012).
44.   Wei, Z., Falzone, G., Wang, B., Thiele, A., Puerta-Falla, G., Pilon, L., Neithalath, N. and Sant, G., "The durability of cementitious composites containing microencapsulated phase change materials", Cement and Concrete Composites,  Vol. 81, (2017), 66-76. DOI: 10.1016/j.cemconcomp.2017.04.010
45.   Eddhahak-Ouni, A., Drissi, S., Colin, J., Neji, J. and Care, S., "Experimental and multi-scale analysis of the thermal properties of portland cement concretes embedded with microencapsulated phase change materials (PCMS)", Applied Thermal Engineering,  Vol. 64, No. 1-2, (2014), 32-39. DOI: 10.1016/j.applthermaleng.2013.11.050
46.   Pilehvar, S., Cao, V.D., Szczotok, A.M., Valentini, L., Salvioni, D., Magistri, M., Pamies, R. and Kjøniksen, A.-L., "Mechanical properties and microscale changes of geopolymer concrete and portland cement concrete containing micro-encapsulated phase change materials", Cement and Concrete Research,  Vol. 100, (2017), 341-349. DOI: 10.1016/j.cemconres.2017.07.012
47.   Berardi, U. and Gallardo, A.A., "Properties of concretes enhanced with phase change materials for building applications", Energy and Buildings,  Vol. 199, (2019), 402-414.
48.   Paksoy, H., Kardas, G., Konuklu, Y., Cellat, K. and Tezcan, F., "Characterization of concrete mixes containing phase change materials", in IOP Conference Series: Materials Science and Engineering, Vol. 251, p. 012118 (12 pp.), IOP Publishing. (2017). DOI:10.1088/1757-899X/251/1/012118
49.          Cholker, A.K. and Tantray, M.A., "Strain-sensing characteristics of self-consolidating concrete with micro-carbon fibre", Australian Journal of Civil Engineering,  Vol. 18, No. 1, (2020), 46-55. DOI: 10.1080/14488353.2019.1704206