Numerical Simulation of Hydrodynamic Properties of Alex Type Gliders

Document Type : Original Article


Sea-Based Energy Research Group, Babol Noshirvani University of Technology, Babol, Iran


This work presents a numerical Simulation of an underwater glider to investigate the effect of angle of attack on the hydrodynamic coefficients such as lift, drag, and torque. Due to the vital role of these coefficients in designing the controllers of a glider, and to obtain an accurate result, this simulation has been carried on at a range of operating velocities. The total length of the underwater glider with two wings is 900 mm with a 4-digits NACA0009 profile. The fluid flow regime is discretized and solved by computational fluid dynamics and finite volume method. Since the Reynolds number range for this study is in a turbulent flow state (up to 3.7e06), the κ-ω SST formulation was used to solve Navier-Stokes equations and continuity and the angles of attack ranging are from - 8 to 8 degrees. The main purpose of this research is to study the effect of each of the dynamics parameters of glider motion such as velocity and angle of attacks on the hydrodynamic coefficients. Based on the results, the drag and lift coefficients are enhanced with increasing the angle of attack. In addition, the drag coefficient enhanced with increasing the velocity however, when the glider velocity is increased, the lift coefficient does not change significantly except at the highest angle of attack that decreases. The highest drag coefficient is 0.0246, which corresponds to the angle of attack of -8 and the Reynolds number of 3738184. In addition to simple geometry, the glider studied in this paper shows relatively little resistance to flow.


1. Alamian, R., Shafaghat, R., Amiri, H.A. and Shadloo, M.S., "Experimental assessment of a 100 w prototype horizontal axis tidal turbine by towing tank tests", Renewable Energy, Vol. 155, (2020), 172-180. doi:10.1016/j.renene.2020.03.139
2. Alamian, R., Shafaghat, R., Bayani, R. and Amouei, A.H., "An experimental evaluation of the effects of sea depth, wave energy converter’s draft and position of centre of gravity on the performance of a point absorber wave energy converter", Journal of Marine Engineering & Technology, Vol. 16, No. 2, (2017), 70-83. doi:10.1080/20464177.20462017.21282718.
3. Alamian, R., Shafaghat, R., Farhadi, M. and Bayani, R., "Experimental evaluation of irwec1, a novel offshore wave energy converter", International Journal of Engineering, Transactions C: Aspects, Vol. 29, No. 9, (2016), 1292-1299. doi:10.5829/idosi.ije.2016.29.09c.15
4. Yazdi, H., Shafaghat, R. and Alamian, R., "Experimental assessment of a fixed on-shore oscillating water column device: Case study on oman sea", International Journal of Engineering, Transactions C: Aspects Vol. 33, No. 3, (2020), 494-504. doi:10.5829/IJE.2020.33.03C.14
5. Alamian, R., Shafaghat, R. and Safaei, M.R., "Multi-objective optimization of a pitch point absorber wave energy converter", Water, Vol. 11, No. 5, (2019), 969. doi:10.3390/w11050969
6. Amiri, H.A., Shafaghat, R., Alamian, R., Taheri, S.M. and Shadloo, M.S., "Study of horizontal axis tidal turbine performance and investigation on the optimum fixed pitch angle using cfd", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 30, No. 1, (2019), 206-227. doi:10.1108/hff-05-2019-0447
7. Wagawa, T., Kawaguchi, Y., Igeta, Y., Honda, N., Okunishi, T. and Yabe, I., "Observations of oceanic fronts and water-mass properties in the central japan sea: Repeated surveys from an underwater glider", Journal of Marine Systems, Vol. 201, No., (2020), 103242. doi:10.1016/j.jmarsys.2019.103242
8. Leonard, N.E., Paley, D.A., Lekien, F., Sepulchre, R., Fratantoni, D.M. and Davis, R.E., "Collective motion, sensor networks, and ocean sampling", Proceedings of the IEEE, Vol. 95, No. 1, (2007), 48-74. doi:10.1109/jproc.2006.887295
9. Woithe, H.C., Tilkidjieva, D. and Kremer, U., Towards a resource-aware programming architecture for smart autonomous underwater vehicles, in Technical Report DCS-TR-637. 2008, Rutgers University: Department of Computer Science. doi:10.1109/iros.2009.5354098
10. Stommel, H., "The slocum mission", Oceanography, Vol. 2, No. 1, (1989), 22-25. doi:10.5670/oceanog.1989.26
11. Graver, J.G., "Underwater gliders: Dynamics, control and design", Princeton university Princeton, NJ, (2005).
12. Nosrati, K., Tahershamsi, A. and Taheri, S.H.S., "Numerical analysis of energy loss coefficient in pipe contraction using ansys cfx software", Civil Engineering Journal, Vol. 3, No. 4, (2017), 288-300. doi:10.28991/cej-2017-00000091
13. Yamini, O.A., Mousavi, S.H., Kavianpour, M.R. and Movahedi, A., "Numerical modeling of sediment scouring phenomenon around the offshore wind turbine pile in marine environment", Environmental earth sciences, Vol. 77, No. 23, (2018), 776. doi:10.1007/s12665-018-7967-4
14. Du, X.-x., Wang, H., Hao, C.-z. and Li, X.-l., "Analysis of hydrodynamic characteristics of unmanned underwater vehicle moving close to the sea bottom", Defence Technology, Vol. 10, No. 1, (2014), 76-81. doi:10.1016/j.dt.2014.01.007
15. Du, X., Zhang, Z. and Cui, H., "Thrust performance of propeller during underwater recovery process of auv", in OCEANS 2017-
K. Divsalar et al. / IJE TRANSACTIONS A: Basics Vol. 33, No. 7, (July 2020) 1387-1396 1395
Aberdeen, IEEE., (2017), 1-5. doi:10.1109/oceanse.2017.8084603
16. Jung, H.-J., Kim, M.J., Lee, P.-Y. and Jung, H.-S., "A study on numerical analysis of controllable pitch propeller (CPP) using tunnel inspection auv", in 2012 Oceans-Yeosu, IEEE., (2012), 1-4. doi:10.1109/oceans-yeosu.2012.6263551
17. Gao, L., He, R., Li, Y. and Zhang, Z., "Analysis of autonomous underwater gliders motion for ocean research", in ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers Digital Collection., (2014). doi:10.1115/omae2014-24534
18. De Barros, E. and Dantas, J.L.D., "Effect of a propeller duct on auv maneuverability", Ocean Engineering, Vol. 42, (2012), 61-70. doi:10.1016/j.oceaneng.2012.01.014
19. Dantas, J.L.D. and De Barros, E., "Numerical analysis of control surface effects on auv manoeuvrability", Applied Ocean Research, Vol. 42, (2013), 168-181. doi:10.1016/j.apor.2013.06.002
20. Ray, S., Chatterjee, D. and Nandy, S., "Unsteady cfd simulation of 3d auv hull at different angles of attack", Journal of Naval Architecture and Marine Engineering, Vol. 13, No. 2, (2016), 111-123. doi:10.3329/jname.v13i2.25849
21. Joung, T.-H., Sammut, K., He, F. and Lee, S.-K., "Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis", International Journal of Naval Architecture and Ocean Engineering, Vol. 4, No. 1, (2012), 45-57. doi:10.3744/jnaoe.2012.4.1.044
22. Yue, C., Guo, S. and Li, M., "Ansys fluent-based modeling and hydrodynamic analysis for a spherical underwater robot", in 2013 IEEE International Conference on Mechatronics and Automation, IEEE., (2013), 1577-1581. doi:10.1109/icma.2013.6618149
23. Zheng, H., Wang, X. and Xu, Z., "Study on hydrodynamic performance and cfd simulation of auv", in 2017 IEEE International Conference on Information and Automation (ICIA), IEEE., (2017), 24-29. doi:10.1109/icinfa.2017.8078877
24. Singh, Y., Bhattacharyya, S. and Idichandy, V., "Cfd approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results", Journal of Ocean Engineering and Science, Vol. 2, No. 2, (2017), 90-119. doi:10.1016/j.joes.2017.03.003
25. Noman, A.A., Tusar, M.H., Uddin, K.Z., Uddin, F., Paul, S. and Rahman, M., "Performance analysis of an unmanned under water vehicle using cfd technique", in AIP Conference Proceedings, AIP Publishing LLC. Vol. 2121, (2019), 040015. doi:10.1063/1.5115886
26. Lin, Y., Yang, Q. and Guan, G., "Automatic design optimization of swath applying cfd and rsm model", Ocean Engineering, Vol.
172, No., (2019), 146-154. doi:10.1016/j.oceaneng.2018.11.044
27. Nedelcu, A.-T., Faităr, C., Stan, L.-C. and Buzbuchi, N., "Underwater vehicle cfd analyses and reusable energy inspired by biomimetic approach", (2018). doi:10.20944/preprints201808.0175.v1
28. Javaid, M.Y., Ovinis, M., Hashim, F.B., Maimun, A., Ahmed, Y.M. and Ullah, B., "Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider", International Journal of Naval Architecture and Ocean Engineering, Vol. 9, No. 4, (2017), 382-389. doi:10.1016/j.ijnaoe.2016.09.010
29. Liu, Y., Ma, J., Ma, N. and Huang, Z., "Experimental and numerical study on hydrodynamic performance of an underwater glider", Mathematical Problems in Engineering, Vol. 2018, No., (2018). doi:10.1155/2018/8474389
30. Javaid, M.Y., Ovinis, M., Javaid, M. and Ullah, B., "Experimental study on hydrodynamic characteristics of underwater glider", Indian Journal of Geo-Marine Sciences (IJMS), Vol. 48, No. 7, (2019), 1091-1097.
31. Menter, F.R., "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA Journal, Vol. 32, No. 8, (1994), 1598-1605. doi:10.2514/3.12149
32. Sengupta, A.R., Gupta, R. and Biswas, A., "Computational fluid dynamics analysis of stove systems for cooking and drying of muga silk", Emerging Science Journal, Vol. 3, No. 5, (2019), 285-292. doi:10.28991/esj-2019-01191
33. Boroomand, M.R. and Mohammadi, A., "Investigation of k-ε turbulent models and their effects on offset jet flow simulation", Civil Engineering Journal, Vol. 5, No. 1, (2019), 127. doi:10.28991/cej-2019-03091231
34. Isa, K., Arshad, M. and Ishak, S., "A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control", Ocean Engineering, Vol. 81, No., (2014), 111-129. doi:10.1016/j.oceaneng.2014.02.002
35. Abbas, F.M., "Investigating role of vegetation in protection of houses during floods", Civil Engineering Journal, Vol. 5, No. 12, (2019). doi:10.28991/cej-2019-03091436
36. Ahmad, M., Ghani, U., Anjum, N., Pasha, G.A., Ullah, M.K. and Ahmed, A., "Investigating the flow hydrodynamics in a compound channel with layered vegetated floodplains", Civil Engineering Journal, Vol. 6, No. 5, (2020), 860-876. doi:10.28991/cej-2020-03091513
37. Zhang, S., Yu, J., Zhang, A. and Zhang, F., "Spiraling motion of underwater gliders: Modeling, analysis, and experimental results", Ocean Engineering, Vol. 60, (2013), 1-13. doi:10.1016/j.oceaneng.2012.12.023