Experimental Investigation of Friction Pressure Influence on the Characterizations of Friction Welding Joint for AISI 316

Document Type : Original Article


1 LMA, USTHB, BP. 32, El-Alia, 16111 Bab-Ezzoaur, Algiers, Algeria

2 LSGM, USTHB, BP. 32; El-Alia, 16111 Bab-Ezzouar, Algiers, Algeria

3 DEMEM, DTN, Centre de Recherche Nucléaire de Birine, BP. 180, Ain Oussera, Djelfa, Algeria

4 CSPBAT – LBPS, UMR 7244 CNRS, Paris University 13, Galilée Institute, 99, J.B. Clément Street, Villetaneuse, France


This study focuses on the effect of friction pressure on the welding joint strength of AISI 316. Single factor method was used to evaluate the influence of friction pressure, whilst the other conditions kept constant. The experimental data were achieved by temperature measurement using infrared thermometer and thermometer by touch, where hardness Hv10 and micro-hardness Hv0.1 realized along the axial direction, tensile test specimen with 8 mm effective diameter, scanning electronic microscopy (SEM) to observe tensile fracture surface and x-ray diffraction (XRD) to analyze the concentration of gamma iron. The results by high friction pressure provide increased temperature during friction and forging phase, elevated hardness and micro-hardness values at the welding center, improved ductility and ultimate tensile strength (UTS). Whilst the central region of tensile fracture seemed most ductile mode and presence of micro-porosities with different forms and dimensions, hence concentration of face centered cubic (FCC) structure of gamma iron clearly revealed at level of 111.


  1. Titouche, N., Boukharoubab, T., Amzert, S., Hassan, A. J., Lechelah, and R., Ramtani, S., Direct Drive Friction Welding Effect on Mechanical and Electrochemical Characteristics of Titanium Stabilized Austenitic Stainless Steel (AISI 321) Research Reactor Thick Tube, Journal of Manufacturing Processes, Vol. 41 (2019), 273-283, https://doi.org/10.1016/j.jmapro.2019.03.016.
  2. Hincapié, O. D., Salazar, J. A., Restrepo, J. J., Torres, E. A., and Graciano-Uribe, J., Control of Formation of Intermetallic Compound in Dissimilar Joints Aluminum-steel, International Journal of Engineering , Transactions B: Applications, Vol. 32, No. 1, (2019), 127-136, doi: 10.5829/ije.2019.32.01a.17.
  3. Hamdan, A. I., Stress Concentration Factors (SCFs) in Circular Hollow Section CHS-to-H-shaped Section Welded T-Joints under Axial Compression, Civil Engineering Journal, Vol. 5, No. 1 (2019), 33-47, http://dx.doi.org/10.28991/cej-2019-03091223.
  4. André, S. J., Douglas, M., Vieira Braga, L. G., Afonso, R., and Dornelles, R. F., Replacement of Gas metal arc welding by friction welding for joining tubes in the hydraulic cylinders industry. Materials Research, 21, No. 4. (2018), https://doi.org/10.1590/1980-5373-MR-2018-0015.
  5. Peng, L., Jinglong, L., Muhammad, S., Li, L., Jiangtao, X., and Fusheng, Z., Effect of Friction Time on Mechanical and Metallurgical Properties of Continuous Drive Friction Welded Ti6Al4V/SUS321 Joints, Materials and Design, Vol. 56, (2014), 649-656, http://dx.doi.org/10.1016/j.matdes.2013.11.065.
  6. Hassan, A.J., Boukharouba, T., Miroud, D, and Ramtani, S., Metallurgical and Mechanical Behavior of AISI 316- AISI 304 during Friction Welding Process, International Journal of Engineering , Transactions B: Applications, Vol. 32, No. 2, (2019), 284-291, doi:10.5829/ije.2019.32.02b.16.
  7. Ethiraj, N., Sivabalan, T., Sivakumar, B., Vignesh Amar, S., N. Vengadeswaran, and Vetrivel K., Effect of Tool Rotational Speed on the Tensile and Microstructural Properties of Friction Stir Welded Different Grades of Stainless Steel Joints, International Journal of Engineering , Transactions A: Basics, Vol. 33, No. 1, (2020), 141-147, doi: 10.5829/ije.2020.33.01a.16.
  8. Villegas, J.F., Guarín, A.M., and Unfried-Silgado, J., A Coupled Rigid-viscoplastic Numerical Modeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded Aluminum Alloys, International Journal of Engineering, Transactions B: Applications, Vol. 32, No. 2, (2019), 184-191, doi: 10.5829/ije.2019.32.02b.17.
  9. Hasanzadeh, R., Azdast, T., Doniavi, A., Babazadeh, S., Lee, R. E., Daryadel, M., and Shishavan, S. M., Welding Properties of Polymeric Nanocomposite Parts Containing Alumina Nanoparticles in Friction Stir Welding Proces, International Journal of Engineering Transactions A: Basics,  Vol. 30, No. 1, (2017), 143-151, doi: 10.5829/idosi.ije.2017.30.01a.18.
  10. Singh, R., Rizvi, S. A., and Tewari, S. P., Effect of Friction Stir Welding on the Tensile Properties of AA6063 Under Different Conditions, International Journal of Engineering. Transactions A: Basics, Vol. 30, No. 4, (2017), 597-603, doi:10.5829/idosi.ije.2017.30.04a.19.
  11. Shishavan, S. M., Azdast, T., Aghdam, K. M., Hasanzadeh, R., Moradian, M., and Daryadel, M., Effect of Different Nanoparticles and Friction Stir Process Parameters on Surface Hardness and Morphology of Acrylonitrile Butadiene Styrene, International Journal of Engineering Transactions A: Basics, Vol. 31, No. 7 , (2018), 1117-1122, doi: 10.5829/ije.2018.31.07a.16.
  12. Muralimohan, C.H., Muthupandi, V., and Sivaprasad, K., Properties of Friction Welding Titanium-Stainless Steel Joints with a Nickel interlayer, Procedia Material Science, Vol. 5, (2014), 1120-1129, https://doi.org/10.1016/j.mspro.2014.07.406.
  13. Handa, A., and Chawla, V., Mechanical Characterization of Friction Welded Dissimilar Steels at 1000 rpm, Materials Engineering, Vol. 20, (2013), 102-111, http://fstroj.uniza.sk/journal-mi/PDF/2013/14-2013.pdf.
  14. Ma, H., Qin, G., Geng P., Li, F., Fu, B., and Meng, X., Microstructure Characterization and Properties of Carbon Steel to Stainless Steel Dissimilar Metal Joint Made by Friction Welding. Materials and Design, Vol. 86, (2015), 587–597, https://doi.org/10.1016/j.matdes.2015.07.068.
  15. Hassan, A.J., Boukharouba, T., and Miroud, D., Characterizations of Friction Welding Joint Interface for AISI 316, China Welding, Vol. 28, No. 1, (2019), 42-48, doi: 10.12073/j.cw.20180811001.
  16. Ajith, P. M., Afsal Husain, T. M., Sathiya, P., and Aravindan, S., Multi-objective Optimization of Continuous Drive Friction Welding Process Parameters Using Response Surface Methodology with Intelligent Optimization Algorithm, Journal of Iron and Steel Research, International, Vol. 22, No. 10, (2015), 954-960, https://doi.org/10.1016/S1006-706X(15)30096-0.
  17. Hassan, A.J., Lechelah, R., Boukharouba, T., Miroud, D., Titouche N., and Ouali N., History of Microstructure Evolution and its Effect on the Mechanical Behavior During Friction Welding for AISI 316, Edts. T. Boukharouba; et al., Springer International Publishing Switzerland, (2017), 51-65, http://doi: 10.1007/978-3-319-41468-3_5.
  18. Kimura, M., Kusaka, M., Kaizu, K., Nakata K., and Nagatsuka K., Friction Welding Technique and Joint Properties of Thin-Walled Pipe Friction Welded Joint Between Type 6063 Aluminum Alloy and AISI 304 Austenitic Stainless Steel, International Journal of Advanced Manufacturing Technology, Vol. 82, (2016), 489-499, https://doi.org/10.1007/s00170-015-7384-8
  19. Ajith, P.M., Barik, B. K., Sathiya, P., and Aravinda S., Multiobjective Optimization of Friction Welding of UNS S32205 Duplex Stainless Steel, Defence Technology, Vol. 11, (2015), 157-165, https://doi.org/10.1016/j.dt.2015.03.001.
  20. Alves, E. P., Neto, F. P., An, C. Y., and Castorino da Silva E., Experimental Determination of temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel. Journal of Aerospace Technology and Managment, Vol. 4, No.1, (2012), 61-67, doi 10.5028/jatm.2012.04013211.
  21. Kirik, I., and Ozdemir, N., Weldability and Joining Characteristics of AISI 420/AISI 1020 Steels using friction welding, International Journal of Materials Research, Vol. 104, No. 8, (2013), 769-775, https://doi.org/10.3139/146.110917.
  22. Khidhir, G. I., and S. A. Baban, Efficiency of Dissimilar Friction Welded 1045 Medium Carbon Steel and 316L Austenitic Stainless Steel Joints, Journal of Materials Research and Technology, Vol. 8, No. 2, (2019), 1926–1932, https://doi.org/10.1016/j.jmrt.2019.01.010.
  23. Liu, F.C., and Nelson, T.W., Twining and Dynamic Recrystallization in Austenitic Alloy 718 During Friction Welding, Material Characterization, Vol. 140, (2018), 39-44, https://doi.org/10.1016/j.matchar.2018.03.035.
  24. Kaushik, N., and Singhal, S., Experimental Investigations on Microstructural and Mechanical Behavior of Friction Stir Welded Aluminum Matrix Composite, International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 1, (2019), 162-170, doi: 10.5829/ije.2019.32.01a.21.