Efficient Removal of Copper Ion from Aqueous Solution using Crosslinked Chitosan Grafted with Polyaniline

Document Type : Original Article


1 Department of Chemical Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

2 Faculty of Chemical Engineering, University of Mazandaran, Babolsar, Iran

3 Department of Chemical, Materials and Polymer Engineering, Buein Zahra Technical University, Qazvin, Iran


A  high-performance adsorbent  was produced by grafting  polyaniline onto biopolymer chitosan.  The morphological  structure  of  cross-linked  chitosan  grafted  with  polyaniline  was  studied  by  scanning electron  microscopy.  Functional  groups  of  the  synthesized  adsorbent  were  identified  by  Fourier- transform  infrared.  The  performance  of  the  prepared  adsorbent  was  examined  by  batch adsorption experiments. The adsorption studies were performed with different operating parameters such as contact time,  initial  pH,  adsorbent  dosage  and  temperature.  To  evaluate  adsorption  isotherms,  Freundlich, Langmuir and Dubinin-Radushkevich models were fitted to obtained data and the isotherm parameters were determined. Kinetics of the adsorption was studied by pseudo-first-order and pseudo-second-order models. It was observed that the obtained data were fitted more accurately with the pseudo-second-order model than the pseudo-first-order model. At optimum conditions, the maximum capacity and the removal efficiency  of  copper  ions  adsorption  were  obtained  131.58  mg/g  and  92.5%,  respectively.  The regeneration  efficiency  and  the  removal  efficiency  of  regenerated  adsorbent  were  97.7  and  90.4%, respectively.  The  results  revealed the  adsorbent has a great potential  for  adsorption of Cu  (II)  from aqueous solution


1.     Al-Saydeh, S.A., El-Naas, M.H. and Zaidi, S.J., “Copper removal from industrial wastewater: a comprehensive review”, Journal of Industrial and Engineering Chemistry, Vol. 56, (2017), 35-44. doi: 10.1016/j.jiec.2017.07.026
2.     Karim, N., “Copper and human health-a review”, Journal of Bahria University Medical & Dental College, Vol. 8, No. 2, (2018), 117-122.
3.     Krstić, V., Urošević, T. and Pešovski, B., “A review on adsorbents for treatment of water and wastewaters containing copper ions”, Chemical Engineering Science, Vol. 192, (2018), 273-287. doi: 10.1016/j.ces.2018.07.022
4.     Mohamadi, S., Saeedi, M. and Mollahosseini, A., “Desorption kinetics of heavy metals (lead, zinc, and nickel) coexisted with phenanthrene from a natural high buffering soil”, International Journal of Engineering, Vol. 32, No. 12, (2019), 1716-1725. doi: 10.5829/IJE.2019.32.12C.04
5.     Shahrin, S., Lau, W.J., Goh, P.S., Jaafar, J. and Ismail, A.F., “Adsorptive removal of Cr(VI) and Cu(II) ions from water solution using graphene oxide-manganese ferrite (Gmf) nanomaterials”, International Journal of Engineering, Vol. 31, No. 8, (2018), 1341-1346. doi: 10.5829/ije.2018.31.08b.24
6.     Yao, Z.Y., Qi, J.H. and Wang, L.H., “Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu (II) onto chestnut shell”, Journal of Hazardous Materials, Vol. 174, No. 1-3, (2010), 137-143. doi: 10.1016/j.jhazmat.2009.09.027
7.     Peng, W., Li, H., Liu, Y. and Song, S., “A review on heavy metal ions adsorption from water by graphene oxide and its composites”, Journal of Molecular Liquids, Vol. 230, (2017), 496-504. doi: 10.1016/j.molliq.2017.01.064
8.     Zhang, L., Zeng, Y. and Cheng, Z., “Removal of heavy metal ions using chitosan and modified chitosan: a review”, Journal of Molecular Liquids, Vol. 214, (2016), 175-191. doi: 10.1016/j.molliq.2015.12.013
9.     Rolandi, M. and Rolandi, R., “Self-assembled chitin nanofibers and applications”, Advances in Colloid and Interface Science, Vol. 207, (2014), 216-222. doi: 10.1016/j.cis.2014.01.019
10.   Roseman, S., Li, X. and Comb, D., “Conversion of chitin into N-acetylglucosamine, glucosamine and bioethanol”, (2016), Google Patents.
11.   Varalakshmi, V. and Mala, R., “Effect of herbal extract on antimicrobial susceptibility profile of drug resistant burn wound isolates”, International Journal of Agriculture, Environment and Biotechnology, Vol. 6, No. 4S, (2013), 815.
12.   Fan, C., Li, K., He, Y., Wang, Y., Qian, X. and Jia, J., “Evaluation of magnetic chitosan beads for adsorption of heavy metal ions”, Science of the Total Environment, Vol. 627, (2018), 1396-1403. doi: 10.1016/j.scitotenv.2018.02.033
13.   Gokila, S., Gomathi, T., Sudha, P. and Anil, S., “Removal of the heavy metal ion chromiuim (VI) using chitosan and alginate nanocomposites”, International Journal of Biological Macromolecules, Vol. 104, (2017), 1459-1468. doi: 10.1016/j.ijbiomac.2017.05.117
14.   Abraham, A., Soloman, P. and Rejini, V., “Preparation of chitosan-polyvinyl alcohol blends and studies on thermal and mechanical properties”, Procedia Technology, Vol. 24, (2016), 741-748. doi: 10.1016/j.protcy.2016.05.206
15.   Silina, N., Morozov, A., Gornostaeva, E., Smirnova, L. and Zaytsev, S., “Ultrasound-assisted synthesis of block copolymers of chitosan and D, L-lactide: structure and properties”, Polymer Science, Series B, Vol. 59, No. 5, (2017), 551-559. doi: 10.1134/S1560090417050116
16.   Acharyulu, S.R., Gomathi, T. and Sudha, P., “Physico-chemical characterization of cross linked chitosan-polyacrylonitrile polymer blends”, Der Pharmacia Lettre, Vol. 5, No. 2, (2013), 354-363.
17.   Mochalova, A. and Smirnova, L., “State of the art in the targeted modification of chitosan”, Polymer Science, Series B, Vol. 60, No. 2, (2018), 131-161. doi: 10.1134/S1560090418020045
18.   Moussout, H., Ahlafi, H., Aazza, M. and Bourakhouadar, M., “Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis”, Polymer Degradation and Stability, Vol. 130, (2016), 1-9. doi: 10.1016/j.polymdegradstab.2016.05.016
19.   Arumugam, T., Krishnamoorthy, P., Rajagopalan, N., Nanthini, S. and Vasudevan, D., “Removal of malachite green from aqueous solutions using a modified chitosan composite”, International Journal of Biological Macromolecules, Vol. 128, (2019), 655-664. doi: 10.1016/j.ijbiomac.2019.01.185
20.   Pires, C.T., Vilela, J.A. and Airoldi, C., “The effect of chitin alkaline deacetylation at different condition on particle properties”, Procedia Chem, Vol. 9, (2014), 220-225. doi: 10.1016/j.proche.2014.05.026
21.   Deng, J., Ding, X., Zhang, W., Peng, Y., Wang, J., Long, X., Li, P. and Chan, A.S., “Carbon nanotube–polyaniline hybrid materials”, European Polymer Journal, Vol. 38, No. 12, (2002), 2497-2501. doi: 10.1016/S0014-3057(02)00165-9
22.   Zhang, H., Zhao, Q., Zhou, S., Liu, N., Wang, X., Li, J. and Wang, F., “Aqueous dispersed conducting polyaniline nanofibers: promising high specific capacity electrode materials for supercapacitor”, Journal of Power Sources, Vol. 196, No. 23, (2011), 10484-10489. doi: 10.1016/j.jpowsour.2011.08.066
23.   Liu, W., Kumar, J., Tripathy, S., Senecal, K.J. and Samuelson, L., “Enzymatically synthesized conducting polyaniline”, Journal of the American Chemical Society, Vol. 121, No. 1, (1999), 71-78. doi: 10.1021/ja982270b
24.   Langmuir, I., “The adsorption of gases on plane surfaces of glass, mica and platinum”, Journal of the American Chemical society, Vol. 40, No. 9, (1918), 1361-1403. doi: 10.1021/ja02242a004
25.   Sasikala, S. and Muthuraman, G., “Removal of heavy metals from wastewater using tribulus terrestris herbal plants powder”, Iranica Journal of Energy and Environment, Vol. 7, No. 1, (2016), 39-47. doi: 10.5829/idosi.ijee.2016.07.01.06
26    Freundlich, H., “Over the adsorption in solution”, The Journal of Physical Chemistry, Vol. 57, (1906), 1100-1107.
27.   Yavuz, A.G., Dincturk-Atalay, E., Uygun, A., Gode, F. and Aslan, E., “A comparison study of adsorption of Cr (VI) from aqueous solutions onto alkyl-substituted polyaniline/chitosan composites”, Desalination, Vol. 279, No. 1-3, (2011), 325-331. doi: 10.1016/j.desal.2011.06.034
28.   Dubinin, M.M., Zaverina, E. and Radushkevich, L., “Sorption and structure of active carbons. I. adsorption of organic vapors”, Zhurnal Fizicheskoi Khimii, Vol. 21, No. 3, (1947), 151-162.
29.   Sarı, A. and Tuzen, M., “Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies”, Journal of Hazardous Materials, Vol. 157, No. 2-3, (2008), 448-454. doi: 10.1016/j.jhazmat.2008.01.008
30.   Rodrigues, L.A., Maschio, L.J., da Silva, R.E. and da Silva, M.L.C.P., “Adsorption of Cr (VI) from aqueous solution by hydrous zirconium oxide”, Journal of Hazardous Materials, Vol. 173, No. 1-3, (2010), 630-636. doi: 10.1016/j.jhazmat.2009.08.131
31.   Satapathy, M. and Das, P., “Assessment on the modelling of the kinetic parameter for the removal of crystal violet dye using Ag-soil nanocomposite: linear and non-linear analysis”, Desalination and Water Treatment, Vol. 57, No. 9, (2016), 4073-4080. doi: 10.1080/19443994.2014.987179
32.   Gao, A., Xie, K., Song, X., Zhang, K. and Hou, A., “Removal of the heavy metal ions from aqueous solution using modified natural biomaterial membrane based on silk fibroin”, Ecological Engineering, Vol. 99, (2017), 343-348. doi: 10.1016/j.ecoleng.2016.11.008
33.   Jiang, X., Zhou, X., Li, C., Wan, Z., Yao, L. and Gao, P., “Adsorption of copper by flocculated Chlamydomonas microsphaera microalgae and polyaluminium chloride in heavy metal-contaminated water”, Journal of Applied Phycology, Vol. 31, No. 2, (2019), 1143-1151. doi: 10.1007/s10811-018-1636-6
34.   Zhang, S., Zhou, Y., Nie, W., Song, L. and Zhang, T., “Preparation of uniform magnetic chitosan microcapsules and their application in adsorbing copper ion (II) and chromium ion (III)”, Industrial & Engineering Chemistry Research, Vol. 51, No. 43, (2012), 14099-14106. doi: 10.1021/ie301942j
35.   Tang, C., Brodie, P., Brunsting, M. and Tam, K.C., “Carboxylated cellulose cryogel beads via a one-step ester crosslinking of maleic anhydride for copper ions removal”, Carbohydrate Polymers, Vol. No. (2020), 116397. doi: 10.1016/j.carbpol.2020.116397
36.   Cao, M.-l., Li, Y., Yin, H. and Shen, S., “Functionalized graphene nanosheets as absorbent for copper (II) removal from water”, Ecotoxicology and Environmental Safety, Vol. 173, No. (2019), 28-36. doi: 10.1016/j.ecoenv.2019.02.011
37.   Meng, Y., Chen, D., Sun, Y., Jiao, D., Zeng, D. and Liu, Z., “Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method”, Applied Surface Science, Vol. 324, No. (2015), 745-750. doi: 10.1016/j.apsusc.2014.11.028
38.   Algothmi, W.M., Bandaru, N.M., Yu, Y., Shapter, J.G. and Ellis, A.V., “Alginate–graphene oxide hybrid gel beads: An efficient copper adsorbent material”, Journal of Colloid and Interface Science, Vol. 397, No. (2013), 32-38. doi: 10.1016/j.jcis.2013.01.051
39.   Kannamba, B., Reddy, K.L. and AppaRao, B., “Removal of Cu (II) from aqueous solutions using chemically modified chitosan”, Journal of Hazardous Materials, Vol. 175, No. 1-3, (2010), 939-948. doi: 10.1016/j.jhazmat.2009.10.098
40.   Shahrashoub, M. and Bakhtiari, S., “The efficiency of activated carbon/iron oxide nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies”, Microporous and Mesoporous Materials, Vol. No. (2020), 110692. doi: 10.1016/j.micromeso.2020.110692
41.   Jiang, W., Chen, X., Pan, B., Zhang, Q., Teng, L., Chen, Y. and Liu, L., “Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal”, Journal of Hazardous Materials, Vol. 276, No. (2014), 295-301. doi: 10.1016/j.jhazmat.2014.05.032