Efficient Removal of Copper Ion from Aqueous Solution using Crosslinked Chitosan Grafted with Polyaniline

H. Zare*, H. G. Taleghani, J. Khanjani

Abstract

A high-performance adsorbent was produced by grafting polyaniline onto biopolymer chitosan. The morphological structure of cross-linked chitosan grafted with polyaniline was studied by scanning electron microscopy. Functional groups of the synthesized adsorbent were identified by Fourier-transform infrared. The performance of the prepared adsorbent was examined by batch adsorption experiments. The adsorption studies were performed with different operating parameters such as contact time, initial pH, adsorbent dosage and temperature. To evaluate adsorption isotherms, Freundlich, Langmuir and Dubinin-Radushkevich models were fitted to obtained data and the isotherm parameters were determined. Kinetics of the adsorption was studied by pseudo-first-order and pseudo-second-order models. It was observed that the obtained data were fitted more accurately with the pseudo-second-order model than the pseudo-first-order model. At optimum conditions, the maximum capacity and the removal efficiency of copper ions adsorption were obtained 131.58 mg/g and 92.5%, respectively. The regeneration efficiency and the removal efficiency of regenerated adsorbent were 97.7 and 90.4%, respectively. The results revealed the adsorbent has a great potential for adsorption of Cu (II) from aqueous solution.

doi: 10.5829/ije.2021.34.02b.01

1. INTRODUCTION

Heavy metals removal from wastewater is a global issue since they are the most dangerous environmental pollutants. Various industries, especially metal finishing, electroplating, plastics, battery, and etching are continuously releasing copper in their discharges [1-4]. Copper is an essential trace element but its concentration in air, water, and food should be below the tolerance limits; otherwise, it would be harmful to humans and animals. Intake of copper can lead to health complications such as causes irritation, mucosal, hepatic, lung cancer and capillary damage [3, 5, 6].

In recent years, various treatment procedures have been established for the removal of heavy metal ions. Currently, treatment processes include precipitation, oxidation-reduction, ion exchange, membrane filtration-osmosis, coagulation-floculation, and adsorption. Each technique has its advantages and disadvantages, but the adsorption method has been widely employed due to its simplicity of design and operation, low cost, high removal efficiency, and ease of adsorbent regeneration [7, 8].

Chitosan is a biopolymer with the linear structure of β-(1-4)-2amino-2-dexy-D-glucopyranose. Chitosan is generally produced by the deacetylation of chitin found in fungal cell walls and the exoskeleton of arthropods including insects, arachnids, and crustaceans (lobsters, crabs, and shrimps) [9-11]. Chitosan has potential to be employed in a diversity of fields, particularly in wastewater treatment. Chitosan is an appropriate adsorbent for the removal of heavy metals owing to the hydroxyl and amine functional groups [12, 13]. Chitosan has low mechanical strength and thermal stability and also it is soluble in acidic conditions [14, 15]. Several chemical and physical procedures have been applied to improve chitosan properties. Chemical modifications such as crosslinking and grafting improved porosity.

*A corresponding Author Institutional Email: hv.zare@bzte.ac.ir (H. Zare)
surface area, and mechanical properties of chitosan [16, 17].

In the current research, an appropriate adsorbent was made for removing Cu (II) from aqueous phase. In order to modify chitosan properties, chitosan was crosslinked by glutaraldehyde. Then crosslinked chitosan was grafted with polyaniline. The impact of initial pH, contact time, temperature, and adsorbent dosage were investigated. The results data were assessed by Freundlich and Langmuir isotherm models. Also, the adsorption kinetics were studied by pseudo-first-order (PFO) and pseudo-second-order (PSO) models.

2. MATERIALS AND METHODS

2.1. Materials Aniline, ammonium persulfate, acetic acid, citric acid, CuSO₄·5H₂O, and glutaraldehyde (50 wt% in H₂O) were purchased from Merck (Darmstadt, Germany). Chitosan (85% deacetylated) were purchased from Sigma-Aldrich (St. Louis, Mo., USA). Stock solution of 1 g/l of Cu (II) was prepared using analytical grade CuSO₄·5H₂O and kept at ambient temperature. Desired concentrations of Cu ions were prepared by diluting the stock solution with double distilled water.

2.2. Adsorbent Preparation Chitosan was firstly dissolved in a solution of 2.5% acetic acid. Then 1.5% glutaraldehyde was poured into the chitosan solution and the obtained mixture stirred at 150 rpm for 5 h. Glutaraldehyde crosslinks chitosan chains by connecting amine groups. 2% aniline monomer in 50 ml of 1 M citric acid was added to the crosslinked chitosan solution. Then 5 ml of 10% ammonium persulfate was added to the solution drop by drop and stirred at 150 rpm for 10 h. In order to remove oligomers and impurities, cross-linked chitosan grafted with polyaniline (CCGP) was filtered and washed with acetone and double-distilled water. Finally, the resulted composite was completely dried in an oven at 60 °C for about 24 h.

2.3. Batch Adsorption Experiments To investigate the impact of operating conditions on Cu (II) adsorption, experiments were conducted in batch mode. Adsorption isotherm and kinetic evaluations were conducted for the adsorption process. Adsorption experiments were carried out with an initial concentration of 100 mg/l Cu (II) on a heater stirrer (IKA, Germany) at 300 rpm. Batch experiments for the elimination of Cu (II) from aqueous solution were conducted in a pH range of 2-6, adsorbent dosage of 1-5 g/l, and at various temperature in the range of 20 to 40 °C. The initial pH of the solution was set with addition of HCl solution for the required pH value. The initial pH of the solution was determined with a pH meter (AZ 86502, Taiwan). Sampling was performed at specified time intervals, and Cu (II) concentration was determined by inductively coupled plasma optical emission spectrometry (ICP-OES, Varian 730-ES, USA). The Cu (II) removal efficiency, Re (%), was determined according to the following relation:

\[Re = \frac{C_i - C_t}{C_i} \times 100 \]

(1)

where \(C_i \) is the initial Cu (II) concentration (mg/l), and \(C_t \) is the concentrations of Cu (II) at a given time (mg/l), \(q \) is the adsorption capacity, which is the Cu (II) amount adsorbed per unit mass of the adsorbent (mg/g). At a certain contact time of \(t \), \(q_i \) (mg/g) was obtained by means of the equation below:

\[q_i = (C_i - C_t) \times \frac{V}{m} \]

(2)

where \(V \) and \(m \) were the solution volume (1) and the adsorbent dosage (g), respectively.

2.4. Characterization Fourier-transform infrared (FTIR) spectra were acquired with a FTIR spectrometer (Bruker Tensor, Germany). The dried samples were milled into powder. One mg of each sample was blended with 100 mg of spectrophotometric grade KBr in an agate mortar and pressed into a tablet. FTIR spectra were recorded in the wavelength range of 400 to 4000 cm⁻¹. In order to study the surface morphology, the prepared CCGP was gold-coated with a sputtering coater (Emitech K575X, England), and the CCGP surface was observed by scanning electron microscope (SEM) (Phenom-ProX Sem, Netherlands).

3. RESULTS AND DISCUSSION

3.1. FTIR Analysis Functional groups of prepared CCGP were studied using FTIR (Figure 1). The IR spectra of CCGP showed an absorption band at 3439 cm⁻¹ due overlapping the stretching vibration bands of both hydroxyl (–OH) and amine (–NH) groups [18]. The peaks at 2847 and 2923 cm⁻¹ were attributed to the asymmetric and symmetric stretching vibrations of –CH₂ groups [19]. The peak at 1642 cm⁻¹ corresponds to the stretching vibration of the C=O band of acetyl groups of chitosan remained in the adsorbent [3, 20]. The peak appearing at 1553 cm⁻¹ associated with the nitrogen quinone, and the peak at 1456 cm⁻¹ attributed to the benzene ring confirms the formation of polyaniline [21, 22]. The absorption band at 1310 cm⁻¹ is due to the C–N stretching vibration of the benzenoid unit [23].

3.2. SEM and EDAX Analysis In order to investigate surface morphology of CCGP, scanning electron microscopy (SEM) image was taken at a magnification of 27500x (Figure 2). According to the
SEM image, CCGP contains particles smaller than 500 nm and has a high specific surface area. The large contact surface area between adsorbent and metal ions allows a large amount of adsorption relative to the weight of the adsorbent. EADX analysis of CCGP were performed before and after adsorption of copper ions (Figure 3). The presence of copper peak after adsorption indicates that copper ions were successfully adsorbed onto the CCGP.

3. 3. Effect of Contact Time One of the effective parameters in the adsorption experiments is the contact time. Effect of contact time was studied with Cu (II) concentration of 100 mg/l, adsorbent dosage of 5 g/l, initial pH of 6 and at temperature of 20 °C for 180 min. Figure 4 presents the impact of time on the elimination of Cu (II) from the aqueous phase by the CCGP. The adsorption process reached to equilibrium after 100 min of contact time. At equilibrium time of 100 min, removal efficiency of 84.1% achieved and then remained almost constant.

3. 4. Effect of pH The pH of the solution is recognized as the greatest significant parameter affecting metal ions adsorption. To investigate the effect of pH on the adsorption process, the experiments were conducted at initial pH range of 2 to 6. At pH above 6, hydrate structures of copper are formed and the Cu (II) ions precipitate in the solution. Figure 5 presents the impact of pH on the removal of Cu (II) from solution by the CCGP. It can be perceived that the adsorbed amount of metal ions decreased with decreasing pH of solution. This is because at low pH values the amount of H⁺ ions is high and therefore protons can contend with the copper cations for surface sites of the adsorbent. The removal efficiency was reached to maximum value at pH=6; therefore, further experiments were performed with an initial pH of 6.

3. 5. Effect of Temperature and Dosage of Adsorbent The impact of adsorbent dosage was investigated within the range of 1 to 5 g/l of the
adsorbent. The adsorption experiment was conducted at an optimum pH of 6 with the Cu (II) concentration of 100 mg/l. The experiments were carried out under isothermal conditions at various temperatures of 20, 30, and 40 °C. According to curves depicted in Figure 6, as the CCGP dosage increased, the Cu (II) adsorption onto the CCGP rapidly increased. When the adsorbent dose increases, the amount of available surface area increases, resulting in enhanced absorption of copper ions. Also, with increasing adsorbent dosage, the removal efficiency of Cu (II) increased. Maximum removal efficiency (92.5%) was obtained at an adsorbent dosage of 5 g/l and a temperature of 40 °C.

3. 6. The Isotherm Models Isotherms study the association between metal ions concentration in aqueous phase and the metal ions adsorbed onto the adsorbent at a constant temperature. The Langmuir model, a widely used isotherm, is suitable for investigating the adsorption of a monolayer on a surface containing a limited number of adsorption sites, which is given in the equation as follows [24]:

\[
\text{Re} = \frac{q_{\text{max}}C_{e}}{K_{L}C_{e} + q_{\text{max}}}
\]

(3)

The linear form of the Langmuir equation can be rearranged as shown below [25]:

\[
\frac{C_{e}}{q_{e}} = \frac{1}{(K_{L}q_{\text{max}})} + \frac{C_{e}}{q_{\text{max}}}
\]

(4)

where \(C_{e} \) (mg/l) is the equilibrium concentration of Cu (II) in the aqueous phase, \(q_{e} \) (mg/g) is the Cu (II) amount adsorbed per unit mass of the adsorbent at equilibrium, \(q_{\text{max}} \) (mg/g) is the maximum capacity of adsorption at a given temperature, and \(K_{L} \) (L/mg) is the Langmuir constant. The plots of the adsorption isotherm fitted by the Langmuir equation are presented in Figure 7. The values of maximum capacity of the adsorption, \(q_{\text{max}} \), and the Langmuir isotherm constants, \(K_{L} \), were determined from the linear plots (Table 1).

The empirical Freundlich isotherm model was extensively used to define the equilibrium adsorption data for a heterogeneous surface. The nonlinear form of the Freundlich model is expressed by the following equation [26]:

\[
q_{e} = K_{F}(C_{e})^{1/n}
\]

(5)

when the Freundlich equation is rearranged in logarithmic form, a linear equation of log \((q_{e})\) versus log \((C_{e})\) is obtained as follows [27]:

\[
\log(q_{e}) = \log(K_{F}) + \left(\frac{1}{n}\right)\log(C_{e})
\]

(6)

where \(K_{F} \) is the Freundlich isotherm constant ((mg/g)/(mg/L)) \(n \) which is associated to the adsorption capacity, and \(n \) is the adsorption intensity parameter. The plot of log \((q_{e})\) against log \((C_{e})\) is drawn according to the experimental adsorption data (Figure 8). Freundlich isotherm parameters were determined, which are summarized in Table 1. Depending on the results of adsorption isotherms, the maximum capacity of adsorption was obtained 131.58 mg/g at temperature of 40 °C. Also, the comparison of isotherm models showed that the experimental data were fitted better with Freundlich model than the Langmuir model.
To investigate the mechanism of the adsorption of Cu (II) ions on the CCGP, Dubinin-Radushkevich (D-R) model was applied. The D-R model is given in linear form as follows [28]:

$$\ln(q_e) = \ln(q_s) - \beta e^2$$ \hspace{1cm} (7)

In above equation, q_e is the mol of copper ions adsorbed per unit mass of the adsorbent at equilibrium (mol/g), q_s is the isotherm saturation capacity (mol/g), β is the D-R isotherm constant related to adsorption energy (mol2/J2), and e is the Polanyi potential that can be calculated by the following equation:

$$e = RT \ln \left(1 + \frac{1}{C_e}\right)$$ \hspace{1cm} (8)

The mean free energy E (J/mol) of the adsorption process depends on β, which is calculated by the following equation:

$$E = \frac{1}{\sqrt{2\beta}}$$ \hspace{1cm} (9)

![Figure 8](image1.png)

Figure 8. The Cu (II) adsorption isotherm data fitted by Freundlich model at various temperatures of 20–40 °C, (Cu (II) concentration=100 mg/l, initial pH=6, contact time=100 min)

![Figure 9](image2.png)

Figure 9. The Cu (II) adsorption isotherm data fitted by D-R model at various temperatures of 20–40 °C, (Cu (II) concentration=100 mg/l, initial pH=6, contact time=100 min)

The amount of E value is useful to determine the mechanism of the adsorption process. The E values between 8 and 16 kJ/mol indicate that chemical interaction is the mechanism of the adsorption. If the value of E is less than 1, physical absorption is the dominant mechanism [29]. The plot of $\ln(q_e)$ versus E^2 is depicted in Figure 9. The D-R isotherm parameters are listed in Table 1. The E values obtained from D-R isotherm model showed that chemical adsorption is the dominant mechanism of the copper ions adsorption onto the CCGP.

3.7. Adsorption Kinetics

Adsorption kinetics was employed to investigate the diffusion of adsorbate into the adsorbent by measuring the adsorption uptake regarding the time at a constant concentration. In order to study the adsorption kinetics, the batch experiment was carried out at a pH of 6, a temperature of 40 °C and an adsorbent dosage of 5 g/l for 180 min (Figure 10a). PFO and PSO models were applied to study adsorption kinetics of Cu (II) by the adsorbent.

The PFO kinetic model for Cu (II) adsorption on the adsorbent was evaluated by incorporating the experimental adsorption data into the following equation [30]:

$$\log(q_e - q_i) = \log(q_e) - \frac{kq_i}{2.303}$$ \hspace{1cm} (10)

where q_e (mg/g) is the equilibrium amount Cu (II) adsorbed per unit mass of the adsorbent, and k (min$^{-1}$) is the PFO rate constant. The rate constant value, k, is determined from the linear plot (Figure 10b). The values of the PFO rate constant and the correlation coefficient were $k = 0.042$ min$^{-1}$ and 0.882, respectively.

The differential equation of PSO kinetic model is represented as follows [31]:

$$\frac{dq_i}{dt} = K(q_e - q_i)^2$$ \hspace{1cm} (11)

Table 1. Isotherm specifications of the Freundlich and Langmuir models for the adsorption of Cu (II) ions on the CCGP

<table>
<thead>
<tr>
<th>Isotherm models</th>
<th>Parameters</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_f (L/mg)</td>
<td>20</td>
</tr>
<tr>
<td>Freundlich</td>
<td>q_m (mg/g)</td>
<td>90.09</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.968</td>
</tr>
<tr>
<td>Langmuir</td>
<td>K_l (mg/g)/(mg/L)n</td>
<td>2.64</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.995</td>
</tr>
<tr>
<td>D-R</td>
<td>E (kJ/mol)</td>
<td>8.452</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.995</td>
</tr>
</tbody>
</table>
PSO model can be written to linear form for the convenience of plotting and determining rate constant as following equation [32]:

$$\frac{t}{q_t} = \frac{1}{Kq_e} + \frac{t}{q_e}$$

(12)

where \(q_t (\text{mg/g}) \) is the Cu (II) amount adsorbed per the mass of the adsorbent at a contact time of \(t \) (min). \(K (\text{g mg}^{-1} \text{min}^{-1}) \) represents the kinetic rate constant that depends on the conditions of the copper adsorption process on the adsorbent. The adsorption kinetics plot fitted by PSO is shown in Figure 10c. The PSO rate constant, \(k = 6.06 \times 10^{-5} \text{g mg}^{-1} \text{min}^{-1} \) was determined from the linear plot with the correlation coefficient of 0.983. Based on the results, for the absorption of copper ions onto CCGP, PSO kinetic model was more suitable than PFO model.

Figure 10. (a) Removal efficiency of Cu (II) (initial concentration = 100 mg/l, pH = 6, adsorbent dosage = 5 g/L, \(T = 40 \degree C, t = 180 \) min), (b) PFO kinetic model, and (c) PSO kinetic model for Cu (II) adsorption onto CCGP

3. 8. Regeneration and Reusability of the Adsorbent

Regeneration and reusability of the CCGP saturated with copper ions was studied after five consecutive adsorption-desorption cycles. For each adsorption-desorption cycle, CCGP was soaked three times in succession in 0.5 ml HCl solution for 2 hours at 300 rpm. The CCGP was filtered and washed with double-distilled water after each soak. The adsorption experiments were done again using the regenerated CCGP at optimum conditions. After one cycle of adsorption-desorption, the efficiency of CCGP regeneration and the removal efficiency of Cu (II) ions were 97.7 and 90.4%, respectively. After five adsorption-desorption cycles, the regeneration efficiency and the removal efficiency were 81.7 and 75.6%, respectively. Results showed that CCGP has good performance for regeneration and reusability.

Adsorption of Cu (II) ions from aqueous solution using CCGP was investigated. Maximum adsorption capacity (mg of metal ion adsorbed per gram of adsorbent) of CCGP for Cu (II) ions was 131.58 mg g\(^{-1}\). The results were compared with other adsorbents reported in literature (see Table 2). It can be seen that the synthesized CCGP had the highest potential to remove heavy metals from aqueous solutions.

TABLE 2. Comparison of the maximum adsorption capacities of CCGP with other adsorbents

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Maximum adsorption capacity, mg/g</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlamydomonas microsphaera collected by polyaluminium chloride flocculation</td>
<td>79.4</td>
<td>[33]</td>
</tr>
<tr>
<td>Magnetic chitosan</td>
<td>104</td>
<td>[34]</td>
</tr>
<tr>
<td>Carboxylated cellulose cryogel beads crosslinked by maleic anhydride</td>
<td>84.12</td>
<td>[35]</td>
</tr>
<tr>
<td>Functionalized graphene nanosheets</td>
<td>103.22</td>
<td>[36]</td>
</tr>
<tr>
<td>Chitosan-modified magnetic Mn ferrite nanoparticles</td>
<td>65.1</td>
<td>[37]</td>
</tr>
<tr>
<td>Calcium alginate with encapsulated graphene oxide</td>
<td>60.2</td>
<td>[38]</td>
</tr>
<tr>
<td>Epichlorohydrin cross-linked xanthate chitosan</td>
<td>43.47</td>
<td>[39]</td>
</tr>
<tr>
<td>Powdered activated carbon-magnetite nanoparticles</td>
<td>23.61</td>
<td>[40]</td>
</tr>
<tr>
<td>Spherical polystyrene-supported chitosan</td>
<td>99.8</td>
<td>[41]</td>
</tr>
<tr>
<td>CCGP</td>
<td>131.58</td>
<td>This study</td>
</tr>
</tbody>
</table>
4. CONCLUSION

Preparation of an efficient adsorbent by grafting polyaniline onto cross-linked chitosan was reported in this paper. The synthesized composite material CCGP has a high specific surface area with different functional groups, such as amine and hydroxyl, which can enhance the adsorption capacity for heavy metals. The removal efficiency of Cu (II) was dependent on the contact time, initial pH, temperature, and adsorbent dosage. The experimental data were appropriately fitted to Freundlich isotherm model and PSO model with good correlation coefficients. It was concluded that the synthesized adsorbent can effectively remove the copper ions from aqueous solutions.

5. ACKNOWLEDGMENT

The authors wish to acknowledge Buein Zahra Technical University and the University of Mazandaran for the facilities provided to accomplish this research.

6. REFERENCES

چکیده
جاهایی کارایی بالا با استفاده از پودر دانه آلوپلیمر کیتوسین مخلوط شده در روش پودر به روش پودر یکپارچه با تعقیب دانه تیتانیوم و این که از طریق تیتانیوم می‌تواند کارایی بالا با استفاده از پودر دانه آلوپلیمر کیتوسین کنار گذاشته شود.