The Effect of Material Properties on Sensitivity of the Microelectromechanical Systems Piezoelectric Hydrophone


Electrical Engineering, Babol University of Technology


In this paper, we present mathematical analyses to consider the effect of material properties on the sensitivity of the Microelectromechanical systems (MEMS) piezoelectric hydrophone and improve the sensitivity by choosing the proper material. The selected structure in the present paper is a piezoelectric hydrophone able to work at low frequencies. The piezoelectric hydrophones are widely used in sonar structure. Sonar systems are used in marine vessels and transportation, military submarines, battleships, etc. Piezoelectric hydrophones work by converting the received sound pressure to electrical signals. This conversion of sonar energy to electrical energy is performed by the piezoelectric material in the structure of the hydrophone. Thus, the applied piezoelectric material has significant effect on sensitivity and performance of the sensor. In this paper, the sensitivity of the sensor has been improved from -201.3 dB to -192.6 dB by choosing the proper material with higher piezoelectric coefficients (PZT-2 instead of PZT-5A).