Peculiarities of Abrasive Finishing of Surfaces of Parts Made of Aluminium Alloy of АМts Grade in Magnetic Field

Document Type : Original Article

Authors

1 Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russia

2 Tyumen Industrial University, Tyumen, Russia

Abstract

The scientific article presents the results of research to identify the regularities arising from the abrasive finishing of the surfaces of parts made of aluminium alloy grade (AMts) in a magnetic field. As a result of conducted experiments the relations between variable factors of abrasive finishing in a magnetic field and quality indicators of surfaces of parts from aluminium alloy of mark AMts which have been expressed by means of physical and statistical model of graphic dependences of functions defined as Ra = f(t, n) and Ra = f(B, S). It has been established that abrasive finishing in a magnetic field allows for an insignificant amount of time t = 4...12 min to reduce surface roughness from initial Ra = 1.3...1.9 μm to Ra = 0.23...0.85 μm (depending on processing conditions). In addition, the optimization problem of determining the optimal conditions of abrasive finishing in a magnetic field, providing the achievement of the minimum value of roughness Ramin = 0.23 μm of the surfaces of parts made of aluminium alloy grade AMts was solved.

Graphical Abstract

Peculiarities of Abrasive Finishing of Surfaces of Parts Made of Aluminium Alloy of АМts Grade in Magnetic Field

Keywords

Main Subjects


  1. Admakin M, Khalimonenko A, Zakharova V, Nguen VD. Machinability of cutting of low-magnetic high-manganese steels. Chernye Metally. 2023;2023(2):82-7. 10.17580/chm.2023.02.12
  2. Leong K, Jaafar H, Tajul L, Zailani Z, Hamidon R, Zain M. Effect of Inclined Angle in Trimming of Ultra-high Strength Steel Sheets Having Inclined and Curved Shapes. International Journal of Engineering. 2023;36(11):2004-14. 10.5829/IJE.2023.36.11B.06
  3. Fetisov V, Shalygin AV, Modestova SA, Tyan VK, Shao C. Development of a numerical method for calculating a gas supply system during a period of change in thermal loads. Energies. 2022;16(1):60. 10.3390/en16010060
  4. Nikolaev A, Samigullin G, Samigullina L, Fetisov V, editors. Non-stationary operation of gas pipeline based on selections of travel. IOP conference series: Materials Science and Engineering; 2018: IOP Publishing. 10.1088/1757-899X/327/2/022074
  5. Gafur S, Andrey S, Liliya S, Vadim F. Assessment of damage of metallic elements in oil and gas facilities using small punch test. International Journal of Applied Engineering Research. 2017;12(21):11583-7. https://www.ripublication.com/ijaer17/ijaerv12n21_148.pdf
  6. Nikolaev A, Dokoukin V, Lykov Y, Fetisov V, editors. Research of processes of heat exchange in horizontal pipeline. IOP Conference Series: Materials Science and Engineering; 2018: IOP Publishing. 10.1088/1757-899X/327/3/032041
  7. Fetisov V, Davardoost H, Mogylevets V. Technological aspects of methane–hydrogen mixture transportation through operating gas pipelines considering industrial and fire safety. Fire. 2023;6(10):409. 10.3390/fire6100409
  8. Teplyakova A, Azimov A, Alieva L, Zhukov I. Improvement of manufacturability and endurance of percussion drill assemblies: Review and analysis of engineering solutions. MIAB Mining Inf Anal Bull. 2022;9:120-32. 10.25018/0236_1493_2022_9_0_120
  9. Шишлянников Д, Зверев В, Муравский А, Звонарев И, Королев И. МЕТОДИКА ОПРЕДЕЛЕНИЯ СРЕДНЕВЗВЕШЕННОЙ ПРОИЗВОДИТЕЛЬНОСТИ МЕХАНИЗИРОВАННЫХ КОМБАЙНОВЫХ КОМПЛЕКСОВ КАЛИЙНЫХ РУДНИКОВ. Горный информационно-аналитический бюллетень (научно-технический журнал). 2021(7):125-33. 10.25018/0236_1493_2021_7_0_125
  10. Khrustaleva IN, Lyubomudrov SA, Larionova TA, Brovkina YY. Increasing the efficiency of technological preparation for the production of the manufacture components equipment for the mineral resource complex. Записки Горного института. 2021;249:417-26. 10.31897/PMI.2021.3.11
  11. Pshenin VV, Zakirova GS. Improving the efficiency of oil vapor recovery units in the commodity transport operations at oil terminals. Journal of Mining Institute. 2024;265:121-8. 10.31897/PMI.2023.29
  12. Maksarov V, Efimov A, Olt J. Improving the quality of hole processing in welded products made of dissimilar materials with a new boring tool. The International Journal of Advanced Manufacturing Technology. 2022;118(3):1027-42. 10.1007/s00170-021-07975-7
  13. Mahmoodi M, Tagimalek H, Maraki M, Karimi S. Experimental and Numerical Investigation of the Formability of Cross and Accumulative Roll Bonded 1050 Aluminum Alloy Sheets in Single Point Incremental Forming Process. International Journal of Engineering. 2022;35(9):1707-15. 10.5829/ije.2022.35.09C.05
  14. Yamilev M, Pshenin V, Matveev D, Podlesniy D, Bezimyannikov T. The use of compact inspection devices for monitoring the technical condition of pipelines in protective cases (Russian). Oil Industry Journal. 2022;2022(02):106-10. 10.24887/0028-2448-2022-2-106-110
  15. Bennabi A, Adjeloua A, Ameur H, Boualem N, Younsi M. Influence of Multiple Repairs on the Quality of Duplex Welded Joints. International Journal of Engineering, Transactions A: Basics. 2022;35(4):675-84. 10.5829/IJE.2022.35.04A.06
  16. Jadhav SP, Sawant SH. Dry Sliding Behaviour Study of Novel Low-metallic Friction Materials by using DoE-Taguchi Method. International Journal of Engineering, Transactions C: Aspects. 2024;37(3):452-9. 10.5829/ije.2024.37.03c.01
  17. Tandel K, Menghani J. Fabrication of Aluminum 5083/SiC Surface Composite on Tungsten Inert Gas Weld Joint by Novel Direct Friction Stir Processing Technique. International Journal of Engineering, Transactions C: Aspects. 2023;36(3):523-31. 10.5829/IJE.2023.36.03C.12
  18. Stepanov SN, Larionova TA, Stepanov SS. Study of Aluminum Influence on the Adhesion of Stainless Steel in Flame Spraying. Записки Горного института. 2020;245:591-8. 10.31897/PMI.2020.5.11
  19. Bazhin VY, Ustinova YV, Fedorov SN, Shalabi MEK. Improvement of energy efficiency of ore-thermal furnaces in smelting of alumosilicic raw materials. Записки Горного института. 2023(261 (eng)):384-91. https://pmi.spmi.ru/pmi/article/view/16128/16112
  20. Drits A, Ovchinnikov V. Properties of the welded joints of cast aluminum alloys formed by friction stir welding. Tsvetn Met. 2020(1):925. 10.17580/tsm.2020.01.11
  21. Olt J, Maksarov V, Petrishin G, Panteleyenko E, Liskovich M. Magnetic Abrasive Machining of Hard Workpieces by New Diffusion-Alloyed Materials. Russian Engineering Research. 2023;43(2):190-4. 10.3103/S1068798X23030243
  22. Maksarov V, Popov M, Zakharova V. Influence of magnetic-abrasive machining parameters on ceramic cutting tools for technological quality assurance of precision products from cold-resistant steels. Chernye Metally. 2023(1):67. 10.17580/chm.2023.01.10
  23. Khomich N. Magnitno-abrazivnaya obrabotka izdelii (Magnetic Abrasive Treatment of Products), Minsk: Beloruss. Nats Tekh Univ. 2006.
  24. Anjaneyulu K, Venkatesh G. Surface texture improvement of magnetic and non magnetic materials using magnetic abrasive finishing process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2021;235(19):4084-96. 10.1177/0954406220970590
  25. Li W, Li X, Yang S, Li W. A newly developed media for magnetic abrasive finishing process: Material removal behavior and finishing performance. Journal of Materials Processing Technology. 2018;260:20-9. 10.1016/j.jmatprotec.2018.05.007
  26. Davis JR. Aluminum and aluminum alloys: ASM international; 1993.
  27. Mosavat M, Rahimi A. Numerical-experimental study on polishing of silicon wafer using magnetic abrasive finishing process. Wear. 2019;424:143-50. 10.1016/j.wear.2019.02.007
  28. Malpotra A, Singh B, Singh L. Electrolytic magnetic abrasive finishing process–a review. Materials Today: Proceedings. 2023. 10.1016/j.matpr.2023.03.237
  29. Modi KP, Bhavsar SN. Multi-response optimization of magnetic abrasive finishing process parameters on AISI H13 hot die steel using grey relational analysis. Materials Today: Proceedings. 2023. 10.1016/j.matpr.2023.01.381
  30. Heng L, Kim JS, Mun SD, Song JH. Effect of strong flexible polycrystalline diamond abrasive tools in magnetic abrasive finishing of V-grooved ceramic guide rollers. Materials Today Communications. 2022;33:104333. 10.1016/j.mtcomm.2022.104333
  31. Wei C, Tian Y, Chowdhury S, Han J, Gu Z. Investigation on high-shear and low-pressure grinding characteristics for zirconia ceramics using newly developed flexible abrasive tool. Ceramics International. 2023;49(6):8725-35. 10.1016/j.ceramint.2022.10.265
  32. Kumar R. Study the effect of concentration ratio (magnetic abrasive powder and castor oil) in magnetic abrasive finishing process. Materials Today: Proceedings. 2021;37:3706-8. 10.1016/j.matpr.2020.10.160
  33. Gao Y, Zhao Y, Zhao G, Zhang G, Zhang H. Achieving polycrystalline diamond magnetic abrasive tools via double-stage gas atomization. Materials & Design. 2022;224:111423. 10.1016/j.matdes.2022.111423
  34. Bahrami M, Moradi A, Maljaei MD. Periodic magnetic finishing machine. Invention Disclosure. 2022;2:100007. 10.1016/j.inv.2022.100007
  35. Faba A, Rimal HP, Laudani A, Chilosi F, Cardelli E. Measurements of magnetic characteristics of laminated Fe-Si steel filter inductors in grid interface converters. Measurement. 2022;195:111108. 10.1016/j.measurement.2022.111108