Improvement of Surface Evaporation by Reducing Heat Transfer to Fluid Bulk and Increasing Heat Absorption

Document Type : Original Article

Author

Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Surface evaporation is important in many natural phenomena and industrial applications; Therefore, improving this phenomenon is very useful. In this research, the water evaporation rate is increased by designing an innovative structure by inspiring from plant structures. This structure has two main effects, firstly, it reduces the amount of heat transferred to the fluid bulk through the surface and secondly, it increases the amount of heat absorption on the surface. This structure consists of three parts: an evaporation layer, insulation, and water-absorbing fibers. After many investigations on different materials to choose the best materials for these three parts, expanded polystyrene foam and cotton fibers showed the best performance. The structure after construction and testing was able to increase the mass of evaporated water during 24 hours by 28%. It also increased the temperature of the water surface in the evaporation process during 24 hours by 16%; This caused the water to evaporate at a high temperature. In addition, the mentioned structure increased the thermal efficiency up to 85% in the radiant flux of 0.6 . The proposed structure is scalable for any size and cost-effective.

Graphical Abstract

Improvement of Surface Evaporation by Reducing Heat Transfer to Fluid Bulk and Increasing Heat Absorption

Keywords

Main Subjects


  1. Ghasemi H, Ni G, Marconnet AM, Loomis J, Yerci S, Miljkovic N, et al. Solar steam generation by heat localization. Nature Communications. 2014;5(1):4449. https://doi.org/10.1038/ncomms5449
  2. Chen F, Wang S-W, Liu X, Ji R, Yu L, Chen X, et al. High performance colored selective absorbers for architecturally integrated solar applications. Journal of Materials Chemistry A. 2015;3(14):7353-60. https://doi.org/10.1039/C5TA00694E
  3. Ni G, Li G, Boriskina SV, Li H, Yang W, Zhang T, et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy. 2016;1(9):1-7. https://doi.org/10.1038/nenergy.2016.126
  4. Li X, Xu W, Tang M, Zhou L, Zhu B, Zhu S, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proceedings of the National Academy of Sciences. 2016;113(49):13953-8. https://doi.org/10.1073/pnas.1613031113
  5. Zhu G, Xu J, Zhao W, Huang F. Constructing black titania with unique nanocage structure for solar desalination. ACS Applied Materials & Interfaces. 2016;8(46):31716-21. https://doi.org/10.1021/acsami.6b11466
  6. Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics. 2016;10(6):393-8. https://doi.org/10.1038/nphoton.2016.75
  7. Ouar MA, Sellami M, Meddour S, Touahir R, Guemari S, Loudiyi K. Experimental yield analysis of groundwater solar desalination system using absorbent materials. Groundwater for Sustainable Development. 2017;5:261-7. https://doi.org/10.1016/j.gsd.2017.08.001
  8. Liu Z, Yang Z, Huang X, Xuan C, Xie J, Fu H, et al. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. Journal of Materials Chemistry A. 2017;5(37):20044-52. https://doi.org/10.1039/C7TA06384A
  9. Huang X, Yu Y-H, de Llergo OL, Marquez SM, Cheng Z. Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation. RSC Advances. 2017;7(16):9495-9. https://doi.org/10.1039/C6RA26286D
  10. Xu N, Hu X, Xu W, Li X, Zhou L, Zhu S, et al. Mushrooms as efficient solar steam‐generation devices. Advanced Materials. 2017;29(28):1606762. https://doi.org/10.1002/adma.201606762
  11. Ni G, Zandavi SH, Javid SM, Boriskina SV, Cooper TA, Chen G. A salt-rejecting floating solar still for low-cost desalination. Energy & Environmental Science. 2018;11(6):1510-9. https://doi.org/10.1039/C8EE00220G
  12. Li X, Li J, Lu J, Xu N, Chen C, Min X, et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule. 2018;2(7):1331-8. https://doi.org/10.1016/j.joule.2018.04.004
  13. Zhao F, Zhou X, Shi Y, Qian X, Alexander M, Zhao X, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology. 2018;13(6):489-95. https://doi.org/10.1038/s41565-018-0097-z
  14. Hu R, Zhang J, Kuang Y, Wang K, Cai X, Fang Z, et al. A Janus evaporator with low tortuosity for long-term solar desalination. Journal of Materials Chemistry A. 2019;7(25):15333-40. https://doi.org/10.1039/C9TA01576K
  15. Miao E-D, Ye M-Q, Guo C-L, Liang L, Liu Q, Rao Z-H. Enhanced solar steam generation using carbon nanotube membrane distillation device with heat localization. Applied Thermal Engineering. 2019;149:1255-64. https://doi.org/10.1016/j.applthermaleng.2018.12.123
  16. Wang Z, Horseman T, Straub AP, Yip NY, Li D, Elimelech M, et al. Pathways and challenges for efficient solar-thermal desalination. Science Advances. 2019;5(7):eaax0763. https://doi.org/10.1126/sciadv.aax0763
  17. Guo Y, Zhao X, Zhao F, Jiao Z, Zhou X, Yu G. Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy & Environmental Science. 2020;13(7):2087-95. https://doi.org/10.1039/D0EE00399A
  18. Wang Z, Wu X, He F, Peng S, Li Y. Confinement capillarity of thin coating for boosting solar‐driven water evaporation. Advanced Functional Materials. 2021;31(22):2011114. https://doi.org/10.1002/adfm.202011114
  19. Wang Z, Wu X, Dong J, Yang X, He F, Peng S, et al. Porifera-inspired cost-effective and scalable “porous hydrogel sponge” for durable and highly efficient solar-driven desalination. Chemical Engineering Journal. 2022;427:130905. https://doi.org/10.1016/j.cej.2021.130905
  20. Munasir N, Lutfianaa S, Nuhaab F, Evia S, Lydiaa R, Ezaac S, et al. Graphene Based Membrane Modified Silica Nanoparticles for Seawater Desalination and Wastewater Treatment: Salt Rejection and Dyes. International Journal of Engineering, Transactions A: Basics, 2023;36(4):698-708. https://doi.org/10.5829/ije.2023.36.04a.09
  21. Chen J, Li B, Hu G, Aleisa R, Lei S, Yang F, et al. Integrated evaporator for efficient solar-driven interfacial steam generation. Nano Letters. 2020;20(8):6051-8. https://doi.org/10.1021/acs.nanolett.0c01999
  22. Lu Q, Shi W, Yang H, Wang X. Nanoconfined water‐molecule channels for high‐yield solar vapor generation under weaker sunlight. Advanced Materials. 2020;32(42):2001544. https://doi.org/10.1002/adma.202001544
  23. Liu H, Ye HG, Gao M, Li Q, Liu Z, Xie AQ, et al. Conformal Microfluidic‐Blow‐Spun 3D Photothermal Catalytic Spherical Evaporator for Omnidirectional Enhanced Solar Steam Generation and CO2 Reduction. Advanced Science. 2021;8(19):2101232. https://doi.org/10.1002/advs.202101232
  24. Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chemical Reviews. 2020;120(15):7642-707. https://doi.org/10.1021/acs.chemrev.0c00345
  25. Zhou X, Guo Y, Zhao F, Shi W, Yu G. Topology‐controlled hydration of polymer network in hydrogels for solar‐driven wastewater treatment. Advanced Materials. 2020;32(52):2007012. https://doi.org/10.1002/adma.202007012
  26. Guo Y, Yu G. Engineering hydrogels for efficient solar desalination and water purification. Accounts of Materials Research. 2021;2(5):374-84. https://doi.org/10.1021/accountsmr.1c00057
  27. Tao P, Ni G, Song C, Shang W, Wu J, Zhu J, et al. Solar-driven interfacial evaporation. Nature Energy. 2018;3(12):1031-41. https://doi.org/10.1038/s41560-018-0260-7
  28. Bohr T, Rademaker H, Schulz A. Water Motion and Sugar Translocation in Leaves. Plant Biomechanics: From Structure to Function at Multiple Scales. 2018:351-74. https://doi.org/10.1007/978-3-319-79099-2_16
  29. ASTM D. 7334-08; Standard Practice for Surface Wettability of Coatings, Substrates and Pigments by Advancing Contact Angle Measurement. ASTM International: West Conshohocken, PA, USA. 2008.
  30. Jikan company 2023 [Available from: https://www.jikangroup.com/wp-content/uploads/2018/10/CAG-20-PE-Catalogue.pdf.
  31. Zhang L, Tang B, Wu J, Li R, Wang P. Hydrophobic light‐to‐heat conversion membranes with self‐healing ability for interfacial solar heating. Advanced Materials. 2015;27(33):4889-94. https://doi.org/10.1002/adma.201502362
  32. Zhuang S, Zhou L, Xu W, Xu N, Hu X, Li X, et al. Tuning transpiration by interfacial solar absorber‐leaf engineering. Advanced Science. 2018;5(2):1700497. https://doi.org/10.1002/advs.201700497
  33. Wang X, He Y, Liu X, Zhu J. Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films. Powder Technology. 2017;321:276-85. https://doi.org/10.1016/j.powtec.2017.08.027
  34. Li R, Zhang L, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano. 2017;11(4):3752-9. https://doi.org/10.1021/acsnano.6b08415
  35. Lu H, Shi W, Zhao F, Zhang W, Zhang P, Zhao C, et al. High‐yield and low‐cost solar water purification via hydrogel‐based membrane distillation. Advanced Functional Materials. 2021;31(19):2101036. https://doi.org/10.1002/adfm.202101036