Physical, Mechanical, and Thermal Properties of Polyvinyl Alcohol/Nanocrystalline Cellulose Bioplastic Film

Document Type : Original Article

Authors

1 Department of Automotive Engineering Technology, Universitas Muhammadiyah Yogyakarta, Indonesia

2 Department of Mechanical Engineering, Institut Sains and Teknologi Akprind, Yogyakarta, Indonesia

3 Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Indonesia

4 Department of Mechanical Engineering, Universitas Muhammadiyah Yogyakarta, Indonesia

5 Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia

6 Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

7 Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Malaysia

Abstract

The bioplastic film based on Polyvinyl Alcohol (PVA) for food packaging has been widely developed because of its biodegradable properties and safety. Nanocrystalline cellulose (NCC) is used as filler to improve mechanical strength. This study investigated how adding NCC into PVA films affects the physical, mechanical, and thermal properties. Combine acid hydrolysis 46 wt.% and ultrasonication process success to isolate commercial microcrystalline cellulose (MCC) became nanocrystalline cellulose (NCC). It has been characterized by x-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscope (TEM), Differential Scanning Calorimetry (DSC), and Thermal Gravimetric Analysis (TGA). NCC with needle shape form with an aspect ratio (L/D) of 12.4 has been high crystallinity index (76.4%). Addition of 6 wt.% NCC into PVA film improves the tensile strength and elongation by 35.30 MPa and 65.54%, respectively. The bioplastic film gives a barrier on the UV rays by 75% and still has good transparency. The thermal stability improves, indicated by the glass transition temperature (Tg) increase from 109 to 114°C and maximum temperature (Tmax) from 275 to 300 °C.                     

Keywords

Main Subjects


  1. Morais JPS, de Freitas Rosa M, Nascimento LD, Do Nascimento DM, Cassales AR. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydrate Polymers. 2013;91(1):229-35. https://doi.org/10.1016/j.carbpol.2012.08.010
  2. Ghasemi S, Behrooz R, Ghasemi I. Extraction and characterization of nanocellulose structures from linter dissolving pulp using ultrafine grinder. Journal of Nanoscience and Nanotechnology. 2016;16(6):5791-7. https://doi.org/10.1166/jnn.2016.12416
  3. Tonoli GHD, Savastano Jr H, Fuente E, Negro C, Blanco A, Lahr FR. Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Industrial Crops and Products. 2010;31(2):225-32. https://doi.org/10.1016/j.indcrop.2009.10.009
  4. Jiang F, Hsieh Y-L. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers. 2015;122:60-8. https://doi.org/10.1016/j.carbpol.2014.12.064
  5. Johar N, Ahmad I. Morphological, thermal, and mechanical properties of starch biocomposite films reinforced by cellulose nanocrystals from rice husks. BioResources. 2012;7(4). https://doi.org/10.15376/biores.7.4.5469-5477
  6. Kargarzadeh H, Ioelovich M, Ahmad I, Thomas S, Dufresne A. Methods for extraction of nanocellulose from various sources. Handbook of nanocellulose and cellulose nanocomposites. 2017;1:1-49. https://doi.org/10.1002/9783527689972.ch1
  7. Kassab Z, Aziz F, Hannache H, Youcef HB, El Achaby M. Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals. International Journal of Biological Macromolecules. 2019;123:1248-56. https://doi.org/10.1016/j.ijbiomac.2018.12.030
  8. Maache M, Bezazi A, Amroune S, Scarpa F, Dufresne A. Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers. 2017;171:163-72. https://doi.org/10.1016/j.carbpol.2017.04.096
  9. El Achaby M, Kassab Z, Barakat A, Aboulkas A. Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: Application for improving the tensile properties of biopolymer nanocomposite films. Industrial Crops and Products. 2018;112:499-510. https://doi.org/10.1016/j.indcrop.2017.12.049
  10. Terzioğlu P, PARIN FN. Polyvinyl alcohol-corn starch-lemon peel biocomposite films as potential food packaging. Celal Bayar University Journal of Science. 2020;16(4):373-8. https://doi.org/10.18466/cbayarfbe.761144
  11. Li H-Z, Chen S-C, Wang Y-Z. Preparation and characterization of nanocomposites of polyvinyl alcohol/cellulose nanowhiskers/chitosan. Composites Science and Technology. 2015;115:60-5. http://dx.doi.org/10.1016/j.compscitech.2015.05.004
  12. Zhang W, Yang X, Li C, Liang M, Lu C, Deng Y. Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties. Carbohydrate Polymers. 2011;83(1):257-63. https://doi.org/10.1016/j.carbpol.2010.07.062
  13. Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER. Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw. Applied Surface Science. 2018;449:591-602. https://doi.org/10.1016/j.apsusc.2018.01.022
  14. Darie-Niță RN, Râpă M. Processing of Commercially Available Bioplastics. Bioplastics for Sustainable Development. 2021:103-36. https://doi.org/10.1007/978-981-16-1823-9_4
  15. Fatkhurrohman F, Rochardjo HSB, Kusumaatmaja A, Yudhanto F, editors. Extraction and effect of vibration duration in ultrasonic process of cellulose nanocrystal (CNC) from ramie fiber. AIP Conference Proceedings; 2020: AIP Publishing.
  16. Yudhanto F, Jamasri J, Rochardjo HSB, editors. Physical and Mechanical Characterization of Polyvinyl Alcohol Nanocomposite Made from Cellulose Nanofibers. Materials Science Forum; 2020: Trans Tech Publ.
  17. Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, et al. Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources. 2011;6(1):487-512. https://doi.org/10.15376/biores.6.1.487-512
  18. Krishnadev P, Subramanian KS, Janavi GJ, Ganapathy S, Lakshmanan A. Synthesis and characterization of nano-fibrillated cellulose derived from green Agave americana L. fiber. BioResources. 2020;15(2):2442-58. https://doi.org/10.15376/biores.15.2.2442-2458
  19. Handoko F, Yusuf Y. Synthesis and physicochemical properties of poly (vinyl) alcohol nanocomposites reinforced with nanocrystalline Cellulose from Tea (Camellia sinensis) waste. Materials. 2021;14(23):7154. https://doi.org/10.3390/ma14237154
  20. Ibrahim NI, Shahar FS, Sultan MTH, Shah AUM, Safri SNA, Mat Yazik MH. Overview of bioplastic introduction and its applications in product packaging. Coatings. 2021;11(11):1423. https:/doi.org/10.3390/coatings11111423
  21. Ilyas R, Sapuan S, Ishak M. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers. 2018;181:1038-51. https://doi.org/10.1016/j.carbpol.2017.11.045
  22. Stukhlyak P, Buketov A, Panin S, Maruschak P, Moroz K, Poltaranin M, et al. Structural fracture scales in shock-loaded epoxy composites. Physical Mesomechanics. 2015;18:58-74. https://doi.org/10.1134/S1029959915010075
  23. Benchikh L, Merzouki A, Grohens Y, Guessoum M, Pillin I. Characterization of cellulose nanocrystals extracted from El Diss and El Retma local plants and their dispersion in poly (vinyl alcohol-co-ethylene) matrix in the presence of borax. Polymers and Polymer Composites. 2021;29(3):218-30. https://doi.org/10.1177/09673911209108
  24. Vaezi K, Asadpour G, Sharifi SH. Bio nanocomposites based on cationic starch reinforced with montmorillonite and cellulose nanocrystals: Fundamental properties and biodegradability study. International Journal of Biological Macromolecules. 2020;146:374-86. https://doi.org/10.1016/j.ijbiomac.2020.01.007
  25. Ali S, Khatri Z, Oh KW, Kim I-S, Kim SH. Preparation and characterization of hybrid polycaprolactone/cellulose ultrafine fibers via electrospinning. Macromolecular Research. 2014;22:562-8. https://doi.org/10.1007/s13233-014-2078-x
  26. Mirabolghasemi SM, Najafi M, Azizi A, Haji Bagherian M. Physico-mechanical properties of polylactic acid bio-nanocomposites filled by hybrid nanoparticles. Polymers and Polymer Composites. 2021;29(9_suppl):S1510-S9. https://doi.org/10.1177/09673911211060132
  27. Guzman-Puyol S, Hierrezuelo J, Benítez JJ, Tedeschi G, Porras-Vázquez JM, Heredia A, et al. Transparent, UV-blocking, and high barrier cellulose-based bioplastics with naringin as active food packaging materials. International Journal of Biological Macromolecules. 2022;209:1985-94. https://doi.org/10.1016/j.ijbiomac.2022.04.177
  28. Fortunati E, Puglia D, Luzi F, Santulli C, Kenny JM, Torre L. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part I. Carbohydrate Polymers. 2013;97(2):825-36. https://doi.org/10.1016/j.carbpol.2013.03.075
  29. Yudhanto F, Jamasri J, Rochardjo H, Kusumaatmaja A. Experimental study of polyvinyl alcohol nanocomposite film reinforced by cellulose nanofibers from agave cantala. International Journal of Engineering, Transactions A: Basics,. 2021;34(4):987-98. https://doi.org/10.5829/IJE.2021.34.04A.25
  30. Frone AN, Berlioz S, Chailan J-F, Panaitescu DM. Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydrate Polymers. 2013;91(1):377-84. https://doi.org/10.1016/j.carbpol.2012.08.054
  31. Babu BG, Princewinston D, Saravanakumar S, Khan A, Aravind Bhaskar P, Indran S, et al. Investigation on the physicochemical and mechanical properties of novel alkali-treated Phaseolus vulgaris fibers. Journal of Natural Fibers. 2022;19(2):770-81. https://doi.org/10.1080/15440478.2020.1761930
  32. Wang Z, Ding Y, Wang J. Novel polyvinyl alcohol (PVA)/cellulose nanocrystal (CNC) supramolecular composite hydrogels: Preparation and application as soil conditioners. Nanomaterials. 2019;9(10):1397. https://doi.org/10.3390/nano9101397
  33. Gan P, Sam S, Abdullah MFb, Omar MF. Thermal properties of nanocellulose‐reinforced composites: A review. Journal of Applied Polymer Science. 2020;137(11):48544. https://doi.org/10.1002/app.48544