Microstructure and Corrosion Behavior of Al-Cu-Fe Quasi-crystalline Coated Ti-6Al-4V Alloy

Document Type : Original Article

Authors

Department of Ceramic, Materials, and Energy Research Center, Karaj, Iran

Abstract

Different industries, including aerospace, marine, and automotive, widely use titanium alloys such as Ti-6Al-4V. Although, this alloy has excellent properties; it is highly susceptible to corrosion and has low thermal stability and tribological characteristics, limiting its application. In this research, after preparing the Al62.5Cu25Fe12.5 quasi-crystalline (QC) powder mixture and appropriate target, the magnetron sputtering method was employed to deposit the QC coating on the Ti-6Al-4V substrate. The powder mixture and AlCuFe thin films were annealed at 7000C for 2 h. The scanning electron microscope (SEM) analysis and X-ray diffraction (XRD) methods were used to investigate the microstructure and morphology of mixed powders and Al-Cu-Fe QC coatings. NaCl solution (3.5 wt.%) was utilized to conduct the electrochemical measurements. Al-Cu-Fe thin layer deposited on the Ti-6Al-4V alloy surface without any cracks. The XRD patterns related to the annealed powders and the coating after heat treatment indicated the presence of Cu3Al, AlFe3, and quasi-crystalline ternary phases of Al65Cu20Fe15, Al3Fe, AlTi2, and Al65Cu20Fe15 phases, respectively. Based on the polarization test results, the annealed coating at 700°C showed better electrochemical behavior than the Ti-6Al-4V substrate.

Keywords

Main Subjects


  1. Gupta, M. K. , Etri, H.E., Korkmaz, M.E. , Ross, N.S., Krolczyk, G.M., Gawlik, J., Yaşar, N., and Pimenov, D.Y. "Tribological and surface morphological characteristics of titanium alloys: a review", Archives of Civil and Mechanical Engineering, Vol. 22, No. 72, (2022), doi:10.1007/s43452-022-00392-x.
  2. Fatoba, O., Akinlabi, S., Akinlabi, E. and Gharehbaghi, R., "Microstructural analysis, micro-hardness and wear resistance properties of quasicrystalline Al-Cu-Fe coatings on Ti-6Al-4V alloy", Materials Research Express, Vol. 5, No. 6, (2018), 066538. doi: 10.1088/2053-1591/aaca70.
  3. Litynska-Dobrzyńska, L., Stan-Glowinska, K., Wójcik, A., Duraczyńska, D., and Serwicka, E.M., "Microstructure and catalytic activity of melt-spun Al-Cu-Fe ribbons", Materials Science Forum, Vol. 985, (2020), 109-114. 10.4028/www.scientific.net/MSF.985.109.
  4. Mishra, S., Yadav, T., Singh, S., Singh, A., Shaz, M., Mukhopadhyay, N., and Srivastava, O.N., "Evolution of porous structure on Al-Cu-Fe quasicrystalline alloy surface and its catalytic activities", Journal of Alloys and Compounds, Vol. 834, (2020), 155-162.  https://doi.org/10.1016/j.jallcom.2020.155162.
  5. Parsamehr, H., Chen, T.-S., Wang, D.-S., Leu, M.-S., Han, I., Xi, Z., Tsai, A.-P., Shahani, A.J. and Lai, C.-H., "Thermal spray coating of Al-Cu-Fe quasicrystals: Dynamic observations and surface properties", Materialia, Vol. 8, (2019), 100432. doi: 10.1016/j.mtla.2019.100432.
  6. Mora, J., García, P., Muelas, R. and Agüero, A., "Hard quasicrystalline coatings deposited by HVOF thermal spray to reduce ice accretion in aero-structures components", Coatings, Vol. 10, No. 3, (2020), 290. doi: https://doi.org/10.3390/coatings10030290.
  7. Shaĭtura, D. and Enaleeva, A.J., "Fabrication of quasicrystalline coatings: A review", Crystallography Reports, Vol. 52, No. 6, (2007). doi: https://doi.org/10.1134/S1063774507060041.
  8. Widjaja, E.J., and Marks, L.J., "In situ studies of magnetron sputtered Al–Cu–Fe–Cr quasicrystalline thin films", Thin Solid Films, Vol. 420, (2002), 295-299. https://doi.org/10.1016/S0040-6090(02)00809-X.
  9. Parsamehr, H., Lu, Y.-J., Lin, T.-Y., Tsai, A.-P. and Lai, C.H., "In-situ observation of local atomic structure of Al-Cu-Fe quasicrystal formation", Scientific Reports, Vol. 9, No. 1, (2019), 1245. doi: https://doi.org/10.1038/s41598-018-37644-x.
  10. Parsamehr, H., Yang, C.-L., Liu, W.-T., Chen, S.-W., Chang, S.-Y., Chen, L.-J., Tsai, A.P. and Lai, C.-H., "Direct observation of growth and stability of Al-Cu-Fe quasicrystal thin films", Acta Materialia, Vol. 174, (2019), 1-8. https://doi.org/10.1016/j.actamat.2019.05.024.
  11. Parsamehr, H., Chang, S.Y., and Lai, C.H., "Mechanical and surface properties of aluminum-copper-iron quasicrystal thin films", Journal of Alloys and Compounds, Vol. 732, (2018), 952-957. https://doi.org/10.1016/j.jallcom.2017.10.229.
  12. Widjaja, E.J and Marks, L.D, "Microstructural evolution in Al–Cu–Fe quasicrystalline thin films", Thin Solid Films, Vol. 441, No. 1-2, (2003), 63-71. https://doi.org/10.1016/S0040-6090(03)00903-9.
  13. Olsson, S., Eriksson, F., Birch, J. and Hultman, L., "Formation of α-approximant and quasicrystalline Al-Cu-Fe thin films", Thin Solid Films, Vol. 526, (2012), 74-80. doi: https://doi.org/10.1016/j.tsf.2012.11.009.
  14. Ryabtsev, S., Polonskyi, V. and Sukhova, O.V., "Structure and corrosion of quasicrystalline cast alloys and Al-Cu-Fe film coatings", Materials Science, Vol. 56, No. 2, (2020), 263-272. doi: 10.1007/s11003-020-00428-8.
  15. Haidara, F., Duployer, B., Mangelinck, D., and Record, M.C., "In-situ investigation of the icosahedral Al–Cu–Fe phase formation in thin films", Journal of Alloys and Compounds, Vol. 534, (2012), 47-51. doi: https://doi.org/10.1016/j.jallcom.2012.04.036.
  16. Lee, K., Chen, Y., Dai, W., Naugle, D., and Liang, H., "Design of quasicrystal alloys with favorable tribological performance given microstructure and mechanical properties", Materials and Design, Vol. 193, (2020), 108735. https://doi.org/10.1016/j.matdes.2020.108735.
  17. Wolf, W., Kube, S.A., Sohn, S., Xie, Y., Cha, J.J., Scanley, B.E., Kiminami, C.S., Bolfarini, C., Botta, W.J. and Schroers, J., "Formation and stability of complex metallic phases including quasicrystals explored through combinatorial methods", Scientific Reports, Vol. 9, No. 1, (2019), 1-11. https://doi.org/10.1038/s41598-019-43666-w.
  18. Jamshidi Rodbari, R. and Agostinho Jamshi, L.C.L, "Evolution of the phases of quasicrystalline alloys icosahedral/decagonal Al62.2Cu25.3Fe12.5/Al65Ni15Co20 and oxidative behavior", Journal of the Chilean Chemical Society, Vol. 63, No. 2, (2018), 3928–3933. doi: 10.4067/s0717-97072018000203928.
  19. Babilas, R., Bajorek, A., Spilka, M., Radoń, A., and Łoński, W., "Structure and corrosion resistance of Al–Cu–Fe alloys", Progress in Natural Science: Materials International, Vol. 30, No. 3, (2020), 393-401. doi: https://doi.org/10.1016/j.pnsc.2020.06.002.
  20. Sukhova, O., and Polonskyy, V., "Peculiarities in structure formation and corrosion of cast quasicrystalline Al63Cu25Fe12 and Al63Co24Cu13 alloys in sodium chloride aqueous solution", Physics and Chemistry of Solid State, Vol. 21, No. 3, (2020), 530-536. doi: https://doi.org/10.15330/pcss.21.3.530-536.
  21. Ryabtsev, S.I, Sukhova, O.V, and Polonskyy, V.A., "Structure and corrosion in NaCl solution of quasicrystalline Al–Cu–Fe cast alloys and thin films", Journal of Physics and Electronics,Vol. 27, No. 1, (2019), 27-30. doi: 10.15421/331904.
  22. Liu, S., and Shin, Y.C., "Additive manufacturing of Ti6Al4V alloy: A review", Materials and Design, Vol. 164, (2019), 107552. https://doi.org/10.1016/j.matdes.2018.107552.
  23. Fatoba, O., Lasisi, A., Ikumapayi, O., Akinlabi, S. and Akinlabi, E., "Icosahedral structure influence on the microstructural and mechanical properties of laser additive manufactured (LAM) titanium alloy grade 5", Materials Today: Proceedings, Vol. 44, (2021), 1263-1270. doi:10.1016/j.matpr.2020.11.263.
  24. Shukla, A.K., Ledieu, J., Gaudry, E., Wu, D.M., Lograsso, T.A., and Fournée, V., "Quantum size effects in Ag thin films grown on the fivefold surface of the icosahedral Al-Cu-Fe quasicrystal: Influence of the growth temperature", Journal of Vacuum Science and Technology A, Vol. 40, (2022), 013212. Doi: https://doi.org/10.1116/6.0001450.
  25. Singha, A., Hiroto, T., Odea, M., Takakurac, H., Tesarˇ, K., Somekawaa, H., and Hara, T., "Precipitation of stable icosahedral quasicrystal phase in a Mg-Zn-Al alloy", Acta Materialia, Vol. 225, (2022), 117563. https://doi.org/10.1016/j.actamat.2021.117563.
  26. Gashti, M., Mehdinavaz Aghdam, R., Motallebzadeh, A., Gharibi Asl, F., Soltani, R., Ashraf, A., Balaei, H., and Razazzadeh, A., "Bio‑Corrosion, Mechanical and Microstructural Properties of TiTaMoVZr High‑Entropy Alloy Film on Ti–6Al–4V Substrate", Metals and Materials International, (2022), https://doi.org/10.1007/s12540-023-01464-0.
  27. Phan, N.H., Donga, P.V., Muthuramalingam, T., Thiena, N.V., Dunga, H.T., Hunga, T.Q., Duca, N.V., and Lya, N.T., "Experimental Investigation of Uncoated Electrode and PVD AlCrNi Coating on Surface Roughness in Electrical Discharge Machining of Ti-6Al-4V", International Journal of Engineering, Transactions A: Basics, Vol. 34, No. 04, (2021), 928-934. Doi: 10.5829/ije.2021.34.04a.19.
  28. Rahmouni, K., Besnard, A., Oulmi, K., Nouveau, C., Hidoussi, A., Aissani, L., and Zaabat, M., "In vitro corrosion response of CoCrMo and Ti-6Al-4V orthopedic implants with Zr columnar thin films ", Surface and Coatings Technology, Vol. 436, (2022), 128310. https://doi.org/10.1016/j.surfcoat.2022.128310.
  29. Tsai, S.Y., Chen, Y.A., You, J.D., Chu, J.P., and You, P., "Micro-scale tribological study of a Ni-Cr-Fe-Ti-Al-V high entropy alloy thin film by magnetron co-sputtering of Inconel-718 and Ti-6Al-4V ", Surface and Coatings Technology, Vol. 464, (2023), 129481. https://doi.org/10.1016/j.surfcoat.2023.129481.
  30. Nikravesh, M., Akbaria, G.H., and Poladi, A., Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering, International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 2, (2017) 288-293. doi: 10.5829/idosi.ije.2017.30.02b.16
  31. Zhu, L., Soto-Medina, S., Cuadrado-Castillo, W., Hennig, R.G., and Manuel, M.V., "New experimental studies on the phase diagram of the Al-Cu-Fe quasicrystal-forming system", Materials and Design, Vol. 185, (2020), 108186. doi: https://doi.org/10.1016/j.matdes.2019.108186.
  32. Huttunen-Saarivirta, E.J., "Microstructure, fabrication, and properties of quasicrystalline Al–Cu–Fe alloys: A review", Journal of Alloys and Compounds, Vol. 363, No. 1-2, (2004), 154-178. https://doi.org/10.1016/S0925-8388(03)00445-6.
  33. Ryabtsev, S. and Sukhova, O., "Ion-plasma deposition of thin quasicrystalline Al-Cu-Fe and Al-Cu-Co films", Problems of Atomic Science and Technology, Vol. 126, No. 2, (2020), 126-145. doi: 10.46813/2020-126-145.
  34. Ryabtsev, S., Polonskyy, V., and Sukhova, O., "Effect of scandium on the structure and corrosion properties of vapor-deposited nanostructured quasicrystalline Al–Cu–Fe films", Powder Metallurgy and Metal Ceramics, Vol. 58, No. 9-10, (2020), 567-575. doi: 10.1007/s11106-020-00111-2
  35. Kameoka, S., Tanabe, T., Satoh, F., Terauchi, M., and Tsai, A.P., "Activation of Al–Cu–Fe quasicrystalline surface: Fabrication of a fine nanocomposite layer with high catalytic performance", Science and Technology of Advanced Materials, Vol. 15, No. 1, (2014). doi: 10.1088/1468-6996/15/1/014801.
  36. Polishchuk, S., Ustinov, A., Telychko, V., Merstallinger, A., Mozdzen, G., and Melnichenko, T., "Fabrication of thick, crack-free quasicrystalline Al–Cu–Fe coatings by electron-beam deposition", Surface and Coatings Technology, Vol. 291, (2016), 406-412. doi: 10.1016/j.surfcoat.2016.03.002.
  37. Wang, X., Guan, R., Misra, R., Wang, Y., Li, H., Shang, Y, "The mechanistic contribution of nanosized Al3Fe phase on the mechanical properties of Al-Fe alloy", Surface and Coatings Technology, Vol. 724, (2018), 452-460. doi: 10.1016/j.msea.2018.04.002.
  38. Mahdavian, M. and Attar, M., "Another approach in theanalysis of paint coatings with eis measurement: Phase angle at high frequencies", Corrosion Science, Vol. 48, No. 12, (2006), 4152-4157. https://doi.org/10.1016/j.corsci.2006.03.012.
  39. Ebrahimi, N., Sedaghat Ahangari Hosseinzadeh, A., Vaezi, M., and Mozafari, M., "Evaluation of Corrosion Resistance of Bi-layered Plasma-sprayed Coating on Titanium Implants", International Journal of Engineering, Transactions A: Basics, Vol. 35, No. 04, (2022) 635-643. doi: 10.5829/ije.2022.35.04A.03.